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Transport in graphene at non-zero µ

T. Ando, Y. Zheng and H. Suzuura, J. Phys. Soc. Jpn. 71 (2002) pp. 1318-1324

From the Kubo formula

σ(ω) = 2 (evF )
2 �
i

�

ss�

�
d2k

4π2

f(εs(k))− f(εs�(k))

(εs(k)− εs�(k))(εs(k)− εs�(k) + �ω + iη)

where εs(k) = s�vF |k| and s, s� = ±1 for the valence and conduction bands.
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Transport in graphene at non-zero µ

T. Ando, Y. Zheng and H. Suzuura, J. Phys. Soc. Jpn. 71 (2002) pp. 1318-1324

A is inversely proportional to disorder.

In the clean limit A → ∞, at T = 0

Re[σ(ω)] =
e2

�

�
εF
� δ(ω) +

1

4
θ(|ω| − 2εF )

�

Notice delta function is present even at

T = 0 at non-zero density: this is a generic

consequence of the conservation of mo-

mentum in any clean interacting Fermi

liquid. Only “umklapp” scattering can

broaden this delta function.
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4
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Notice delta function is present even at

T = 0 at non-zero density: this is a generic

consequence of the conservation of mo-

mentum in any clean interacting Fermi

liquid. Only “umklapp” scattering can

broaden this delta function.

T = 0, µ > 0
No disorder
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Particles Holes

Momentum

Current

k

εk

k

εk

Current carrying state has non-zero momentum, and collisions 
cannot relax current to zero

Momentum

Current
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Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, 
H. L. Stormer, and D. N. Basov, Nature Physics 4, 532 (2008).

Undoped graphene
Optical conductivity of graphene
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Begin with a CFT
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Holographic representation: AdS4

S =

�
d4x

√
−g

�
1

2κ2

�
R+

6

L2

��

A 2+1 
dimensional 

CFT
at T=0
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Holographic representation: AdS4

A 2+1 
dimensional 

CFT
at T=0

ds2 =

�
L

r

�2 � dr2

f(r)
− f(r)dt2 + dx2 + dy2

�

with f(r) = 1
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Apply a chemical potential

Monday, June 4, 2012



This is to be solved subject to the constraint

Aµ(r → 0, x, y, t) = Aµ(x, y, t)

where Aµ is a source coupling to a conserved U(1) current Jµ
of the CFT3

S = SCFT + i

�
dxdydtAµJµ

At non-zero chemical potential we simply require Aτ = µ.

AdS4 theory of “nearly perfect fluids”
To leading order in a gradient expansion, charge transport in
an infinite set of strongly-interacting CFT3s can be described by
Einstein-Maxwell gravity/electrodynamics on AdS4-Schwarzschild

SEM =

�
d4x

√
−g

�
− 1

4g24
FabF

ab

�
.

Monday, June 4, 2012



AdS4 theory of “nearly perfect fluids”
To leading order in a gradient expansion, charge transport in
an infinite set of strongly-interacting CFT3s can be described by
Einstein-Maxwell gravity/electrodynamics on AdS4-Schwarzschild

SEM =

�
d4x

√
−g

�
− 1

4g24
FabF

ab

�
.

This is to be solved subject to the constraint

Aµ(r → 0, x, y, t) = Aµ(x, y, t)

where Aµ is a source coupling to a conserved U(1) current Jµ
of the CFT3

S = SCFT + i

�
dxdydtAµJµ

At non-zero chemical potential we simply require Aτ = µ.
Monday, June 4, 2012



+

++

+
+

+
Electric flux

�Q�
�= 0

The Maxwell-Einstein theory of the applied 
chemical potential yields a AdS4-Reissner-Nordtröm 
black-brane

S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, Physical Review B 76, 144502 (2007)
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The Maxwell-Einstein theory of the applied 
chemical potential yields a AdS4-Reissner-Nordtröm 
black-brane

Er = �Q�
Er = �Q�

r

ds2 =

�
L

r

�2 � dr2

f(r)
− f(r)dt2 + dx2 + dy2

�

with f(r) =
�
1− r

R

�2
�
1 +

2r

R
+

3r2

R2

�
and R =

√
6Lg4
κµ

, and Aτ = µ
�
1− r

R

�
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++

+
+

+
Electric flux

�Q�
�= 0

The Maxwell-Einstein theory of the applied 
chemical potential yields a AdS4-Reissner-Nordtröm 
black-brane

At T = 0, we obtain an extremal black-brane, with
a near-horizon (IR) metric of AdS2 ×R2

ds2 =
L2

6

�
−dt2 + dr2

r2

�
+ dx2 + dy2

r

T. Faulkner, H. Liu, 
J. McGreevy, 
and D. Vegh, 
arXiv:0907.2694
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Compute conductivity using response to a time-dependent
vector potential as a function of ω/T and µ/T

S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, Physical Review B 76, 144502 (2007)

σ(ω) =
e2

�
πρ2

(ε+ P )
δ(ω)

where ρ is the number density,
� is the energy density,
and P is the pressure.
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Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, 
H. L. Stormer, and D. N. Basov, Nature Physics 4, 532 (2008).

Undoped graphene
Optical conductivity of graphene
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Features of AdS2 X R2

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694
S. Sachdev, Phys. Rev. Lett. 105, 151602 (2010).

S.-S. Lee, Phys. Rev. D 79, 086006 (2009);
M. Cubrovic, J. Zaanen, and K. Schalm, Science 325, 439 (2009);

• Has non-zero entropy density at T = 0, and “vol-

ume” law for entanglement entropy.

• Green’s function of a probe fermion (a mesino) can

have a Fermi surface, but self energies are momentum

independent, and the singular behavior is the same

on and off the Fermi surface

• Deficit of order ∼ N2
in the volume enclosed by the

mesino Fermi surfaces: presumably associated with

“hidden Fermi surfaces” of gauge-charged particles

(the quarks).
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YBa2Cu3O6+x

High temperature 
superconductors
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Broken rotational symmetry 
in the pseudogap phase of a 
high-Tc superconductor
R. Daou, J. Chang, David LeBoeuf, Olivier Cyr-
Choiniere, Francis Laliberte, Nicolas Doiron-
Leyraud, B. J. Ramshaw, Ruixing Liang, 
D. A. Bonn, W. N. Hardy,  and Louis Taillefer
Nature, 463, 519 (2010).
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Strong anisotropy of 
electronic states between 
x and y directions:

Electronic 
“Ising-nematic” order

STM measurements of Z(r), the energy asymmetry

in density of states in Bi2Sr2CaCu2O8+δ.

M. J. Lawler, K. Fujita,

Jhinhwan Lee,

A. R. Schmidt,

Y. Kohsaka, Chung Koo

Kim, H. Eisaki,

S. Uchida, J. C. Davis,

J. P. Sethna, and

Eun-Ah Kim, Nature

466, 347 (2010)
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Fermi surface with full square lattice symmetry

Quantum criticality of Ising-nematic ordering

x

y
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Spontaneous elongation along x direction:
Ising order parameter φ > 0.

x

y
Quantum criticality of Ising-nematic ordering

Monday, June 4, 2012



x

y

Spontaneous elongation along y direction:
Ising order parameter φ < 0.

Quantum criticality of Ising-nematic ordering
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Ising-nematic order parameter

φ ∼
�

d2k (cos kx − cos ky) c†kσckσ

Measures spontaneous breaking of square lattice

point-group symmetry of underlying Hamiltonian
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rrc

Pomeranchuk instability as a function of coupling r

�φ� = 0�φ� �= 0

or

Quantum criticality of Ising-nematic ordering
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T

Phase diagram as a function of T and r
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T

Phase diagram as a function of T and r

T ∗ ?

�φ� = 0

Quantum
critical

�φ� �= 0
rrc
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Quantum criticality of Ising-nematic ordering
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T

Phase diagram as a function of T and r

T ∗ ?

�φ� = 0

Quantum
critical

�φ� �= 0
rrc

TI-n

Strange
Metal ?

Quantum criticality of Ising-nematic ordering
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Effective action for Ising order parameter

Sφ =
�

d2rdτ
�
(∂τφ)2 + c2(∇φ)2 + (λ− λc)φ2 + uφ4

�

Quantum criticality of Ising-nematic ordering
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Effective action for Ising order parameter

Sφ =
�

d2rdτ
�
(∂τφ)2 + c2(∇φ)2 + (λ− λc)φ2 + uφ4

�

Effective action for electrons:

Sc =
�

dτ

Nf�

α=1




�

i

c†iα∂τ ciα −
�

i<j

tijc
†
iαciα





≡
Nf�

α=1

�

k

�
dτc†kα (∂τ + εk) ckα

Quantum criticality of Ising-nematic ordering
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�φ� > 0 �φ� < 0

Coupling between Ising order and electrons

Sφc = − γ

�
dτ

Nf�

α=1

�

k,q

φq (cos kx− cos ky)c†k+q/2,αck−q/2,α

for spatially dependent φ

Quantum criticality of Ising-nematic ordering

Monday, June 4, 2012



Sφ =
�

d2rdτ
�
(∂τφ)2 + c2(∇φ)2 + (λ− λc)φ2 + uφ4

�

Sc =
Nf�
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�

k

�
dτc†kα (∂τ + εk) ckα

Sφc = − γ

�
dτ

Nf�

α=1

�

k,q
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Quantum criticality of Ising-nematic ordering
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• φ fluctuation at wavevector �q couples most efficiently to fermions
near ±�k0.

• Expand fermion kinetic energy at wavevectors about ±�k0 and
boson (φ) kinetic energy about �q = 0.

Quantum criticality of Ising-nematic ordering
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• Expand fermion kinetic energy at wavevectors about ±�k0 and
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Quantum criticality of Ising-nematic ordering
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L[ψ±, φ] =

ψ†
+

�
∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
∂τ + i∂x − ∂2

y

�
ψ−

−φ
�
ψ†
+ψ+ + ψ†

−ψ−

�
+

1

2g2
(∂yφ)

2

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

Quantum criticality of Ising-nematic ordering
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=

• Model of a spin liquid (“Bose metal”): couple fermions to a
dynamical gauge field Aµ.

L = f†
σ

�
∂τ − iAτ − (∇− iA)2

2m
− µ

�
fσ
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L[ψ±, φ] =

ψ†
+

�
∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
∂τ + i∂x − ∂2

y

�
ψ−

−φ
�
ψ†
+ψ+ + ψ†

−ψ−

�
+

1

2g2
(∂yφ)

2

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

Quantum criticality of Ising-nematic ordering
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Field theory of U(1) spin liquid

L[ψ±, a] =

ψ†
+

�
∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
∂τ + i∂x − ∂2

y

�
ψ−

−a
�
ψ†
+ψ+ − ψ†

−ψ−

�
+

1

2g2
(∂ya)

2

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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L[ψ±, φ] =

ψ†
+

�
∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
∂τ + i∂x − ∂2

y

�
ψ−

−φ
�
ψ†
+ψ+ + ψ†

−ψ−

�
+

1

2g2
(∂yφ)

2

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

Quantum criticality of Ising-nematic ordering
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(a)

(b)
Landau-damping

L = ψ†
+

�
∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
∂τ + i∂x − ∂2

y

�
ψ−

− φ
�
ψ†
+ψ+ + ψ†

−ψ−

�
+

1

2g2
(∂yφ)

2

Quantum criticality of Ising-nematic ordering

One loop φ self-energy with Nf fermion flavors:

D(�q, ω) = Nf

�
d2k

4π2

dΩ

2π

1

[−i(Ω + ω) + kx + qx + (ky + qy)2]
�
−iΩ− kx + k2y

�

=
Nf

4π

|ω|
|qy|

Monday, June 4, 2012



(a)

(b)
Electron self-energy at order 1/Nf :

Σ(�k,Ω) = − 1

Nf

�
d2q

4π2

dω

2π

1

[−i(ω +Ω) + kx + qx + (ky + qy)2]

�
q2y
g2

+
|ω|
|qy|

�

= −i
2√
3Nf

�
g2

4π

�2/3

sgn(Ω)|Ω|2/3

Quantum criticality of Ising-nematic ordering

L = ψ†
+

�
∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
∂τ + i∂x − ∂2

y

�
ψ−

− φ
�
ψ†
+ψ+ + ψ†

−ψ−

�
+

1

2g2
(∂yφ)

2
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Quantum criticality of Ising-nematic ordering

L = ψ†
+

�
∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
∂τ + i∂x − ∂2

y

�
ψ−

− φ
�
ψ†
+ψ+ + ψ†

−ψ−

�
+

1

2g2
(∂yφ)

2

Schematic form of φ and fermion Green’s functions

D(�q, ω) =
1/Nf

q2y +
|ω|
|qy|

, Gf (�q, ω) =
1

qx + q2y − isgn(ω)|ω|2/3/Nf

In both cases qx ∼ q2y ∼ ω1/z, with z = 3/2. Note that the

bare term ∼ ω in G−1
f is irrelevant.

Strongly-coupled theory without quasiparticles.
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Simple scaling argument for z = 3/2.

Quantum criticality of Ising-nematic ordering

L = ψ†
+

�
∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
∂τ + i∂x − ∂2

y

�
ψ−

− φ
�
ψ†
+ψ+ + ψ†

−ψ−

�
+

1

2g2
(∂yφ)

2
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Simple scaling argument for z = 3/2.
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Under the rescaling x → x/s, y → y/s1/2, and τ → τ/sz, we
find invariance provided

φ → φ s(2z+1)/4

ψ → ψ s(2z+1)/4

g → g s(3−2z)/4

So the action is invariant provided z = 3/2.
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Schematic form of φ and fermion Green’s functions

D(�q, ω) =
1/Nf

q2y +
|ω|
|qy|

, Gf (�q, ω) =
1

qx + q2y − isgn(ω)|ω|2/3/Nf

In both cases qx ∼ q2y ∼ ω1/z, with z = 3/2. Note that the

bare term ∼ ω in G−1
f is irrelevant.

Strongly-coupled theory without quasiparticles.

Monday, June 4, 2012



The 1/Nf expansion is not determined
by counting fermion loops, because of in-
frared singularities created by the Fermi
surface. The |ω|2/3/Nf fermion self-energy
leads to additional powers of Nf , and a
breakdown in the loop expansion.
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Computations in the 1/N expansion

Sung-Sik Lee, Physical Review B 80, 165102 (2009)

All planar graphs of ψ+ alone
are as important as the leading

term

ψ+ ψ−

Graph mixing ψ+ and ψ−
isO

�
N3/2

�
(instead ofO (N)),

violating genus expansion

M. A. Metlitski and S. Sachdev,
Phys. Rev. B 82, 075127 (2010)
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S.-S. Lee, Phys. Rev. B 80, 165102 (2009)

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

D. F. Mross, J. McGreevy, H. Liu, and T. Senthil, Phys. Rev. B 82, 045121 (2010)

• There is a sharp Fermi surface defined by the fermion Green’s
function: G−1

f (|k| = kF , ω = 0) = 0.

• Area enclosed by the Fermi surface A = Q, the fermion density

• Critical continuum of excitations near the Fermi surface with
energy ω ∼ |q|z, where q = |k| − kF is the distance from the
Fermi surface and z is the dynamic critical exponent.

Properties of the strange 
metal at the Ising-nematic 

critical point
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D. F. Mross, J. McGreevy, H. Liu, and T. Senthil, Phys. Rev. B 82, 045121 (2010)

Properties of the strange 
metal at the Ising-nematic 

critical point
→| q |←

• Fermion Green’s functionG−1
f = q1−ηF (ω/qz). Three-

loop computation shows η �= 0 and z = 3/2.

• The phase space density of fermions is effectively one-
dimensional, so the entropy density S ∼ T deff/z with
deff = 1.
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B

A

Entanglement entropy

Measure strength of quantum
entanglement of region A with region B.

ρA = TrBρ = density matrix of region A
Entanglement entropy SEE = −Tr (ρA ln ρA)
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Logarithmic violation of “area law”: SEE =
1

12
(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

B

A

Entanglement entropy of Fermi surfaces

D. Gioev and I. Klich, Physical Review Letters 96, 100503 (2006)
B. Swingle,  Physical Review Letters 105, 050502 (2010)
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Logarithmic violation of “area law”: SEE =
1

12
(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

B

A

Y.  Zhang, T. Grover,  and A. Vishwanath, Physical Review Letters 107, 067202 (2011)

Entanglement entropy of Fermi surfaces
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      Compressible quantum matter

 A. Fermi liquids:graphene

  B. Holography: Reissner - Nördstrom 
                                      solution

  C. Non-Fermi liquids: 
    nematic critical point (and U(1) spin liquids)

  D. Holography: scaling arguments for 
              entropy and entanglement entropy
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L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

Consider the metric which transforms under rescaling as

xi → ζ xi

t → ζz t

ds → ζθ/d ds.

This identifies z as the dynamic critical exponent (z = 1 for
“relativistic” quantum critical points).

θ is the violation of hyperscaling exponent.
The most general choice of such a metric is

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

We have used reparametrization invariance in r to choose so
that it scales as r → ζ(d−θ)/dr.
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At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the

thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the

“area” of the horizon, and so S ∼ r−d
h

r
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r

At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the

thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the

“area” of the horizon, and so S ∼ r−d
h

Under rescaling r → ζ(d−θ)/dr, and the
temperature T ∼ t−1, and so

S ∼ T (d−θ)/z = T deff/z

where θ = d−deff measures “dimension deficit” in
the phase space of low energy degrees of a freedom.
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• The thermal entropy density scales as

S ∼ T (d−θ)/z.

The third law of thermodynamics requires θ < d.

• The entanglement entropy, SE , of an entangling region with
boundary surface ‘area’ P scales as

SE ∼






P , for θ < d− 1
P lnP , for θ = d− 1
P θ/(d−1) , for θ > d− 1

All local quantum field theories obey the “area law” (upto log
violations) and so θ ≤ d− 1.

• The null energy condition implies z ≥ 1 +
θ

d
.

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�
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r
Emergent holographic direction

A

Holographic entanglement entropy
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r
Emergent holographic direction

A
Area of 
minimal 

surface equals 
entanglement

entropy

Holographic entanglement entropy

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).
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• The value of θ is fixed by requiring that the thermal
entropy density S ∼ T 1/z for general d.
Conjecture: this metric then describes a compressible
state with a hidden Fermi surface of quarks coupled to
gauge fields

• The null energy condition yields the inequality z ≥
1 + θ/d. For d = 2 and θ = 1 this yields z ≥ 3/2. The
field theory analysis gave z = 3/2 to three loops !

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

θ = d− 1

Holography of non-Fermi liquids

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
Monday, June 4, 2012



• The entanglement entropy exhibits logarithmic viola-
tion of the area law only for this value of θ !!

• The logarithmic violation is of the form P lnP , where
P is the perimeter of the entangling region. This form
is independent of the shape of the entangling region,
just as is expected for a (hidden) Fermi surface !!!

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

θ = d− 1

N. Ogawa, T. Takayanagi, and T. Ugajin, arXiv:1111.1023 

Holography of non-Fermi liquids

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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Holography of non-Fermi liquids

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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Holographic theory of a non-Fermi liquid (NFL)

Add a relevant “dilaton” field

Electric flux

C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, JHEP 1011, 151 (2010).

S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010).

N. Iizuka, N. Kundu, P. Narayan and S. P. Trivedi, arXiv:1105.1162 [hep-th].

Er = �Q�

Er = �Q�

r

S =

�
dd+2x

√
−g

�
1

2κ2

�
R− 2(∇Φ)2 − V (Φ)

L2

�
− Z(Φ)

4e2
FabF

ab

�

with Z(Φ) = Z0eαΦ, V (Φ) = −V0e−βΦ, as Φ → ∞.
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Add a relevant “dilaton” field

Electric flux

C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, JHEP 1011, 151 (2010).

S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010).

N. Iizuka, N. Kundu, P. Narayan and S. P. Trivedi, arXiv:1105.1162 [hep-th].

Er = �Q�

Er = �Q�

r

S =

�
dd+2x

√
−g
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1

2κ2

�
R− 2(∇Φ)2 − V (Φ)

L2

�
− Z(Φ)

4e2
FabF

ab

�

with Z(Φ) = Z0eαΦ, V (Φ) = −V0e−βΦ, as Φ → ∞.

This is a “bosonization” of the Fermi surface
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Holographic theory of a non-Fermi liquid (NFL)

r

Add a relevant “dilaton” field

Electric flux

Er = �Q�

Er = �Q�

C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, JHEP 1011, 151 (2010).

S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010).

N. Iizuka, N. Kundu, P. Narayan and S. P. Trivedi, arXiv:1105.1162 [hep-th].

Leads to metric ds2 = L2

�
−f(r)dt2 + g(r)dr2 +

dx2 + dy2

r2

�

with f(r) ∼ r−γ , g(r) ∼ rδ, Φ(r) ∼ ln(r) as r → ∞.
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ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

θ = d− 1

Holography of non-Fermi liquids

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

• The entanglement entropy has log-violation of the area
law

SE = ΞQ(d−1)/dP lnP.

where P is surface area of the entangling region, and Ξ is
a dimensionless constant which is independent of all UV
details, of Q, and of any property of the entangling region.
Note Q(d−1)/d ∼ kd−1

F via the Luttinger relation, and then
SE is just as expected for a Fermi surface !!!!
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Holographic theory of a non-Fermi liquid (NFL)

Gauss Law and the “attractor” mechanism
⇔ Luttinger theorem on the boundary

Hidden 
Fermi 

surfaces
of “quarks”
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Holographic theory of a fractionalized-Fermi liquid (FL*)

S. Sachdev, Physical Review Letters 105, 151602 (2010)
S. Sachdev, Physical Review D 84, 066009 (2011)

Hidden 
Fermi 

surfaces
of “quarks”

Visible Fermi 
surfaces

of “mesinos”

A state with partial confinement
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The “mesinos” corresponds to the Fermi surfaces obtained in the early probe fermion com-

putation (S.-S. Lee, Phys. Rev. D 79, 086006 (2009); H. Liu, J. McGreevy, and D. Vegh,

arXiv:0903.2477; M. Čubrović, J. Zaanen, and K. Schalm, Science 325, 439 (2009)).

These are spectators, and are expected to have well-defined quasiparticle excitations.

Holographic theory of a fractionalized-Fermi liquid (FL*)

Hidden 
Fermi 

surfaces
of “quarks”

Visible Fermi 
surfaces

of “mesinos”
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• Confining geometry leads to a state which has all the properties
of a Landau Fermi liquid.

Holographic theory of a Fermi liquid (FL)

S. Sachdev, Physical Review D 84, 066009 (2011)

Visible Fermi 
surfaces

of “mesinos”
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Conclusions

Compressible quantum matter

 Evidence for hidden Fermi surfaces in compressible states 
obtained for a class of holographic Einstein-Maxwell-dilaton 
theories. These theories describe a non-Fermi liquid (NFL) state 
of gauge theories at non-zero density.
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Conclusions

Compressible quantum matter

 Evidence for hidden Fermi surfaces in compressible states 
obtained for a class of holographic Einstein-Maxwell-dilaton 
theories. These theories describe a non-Fermi liquid (NFL) state 
of gauge theories at non-zero density.

After fixing θ = d−1 to obtain thermal entropy density S ∼ T 1/z, we found

• Log violation of the area law in entanglement entropy, SE .

• Leading-log SE independent of shape of entangling region.

• The d = 2 bound z ≥ 3/2, compared to z = 3/2 in three-loop field
theory.

• Evidence for Luttinger theorem in prefactor of SE .
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Conclusions

Compressible quantum matter

 Evidence for hidden Fermi surfaces in compressible states 
obtained for a class of holographic Einstein-Maxwell-dilaton 
theories. These theories describe a non-Fermi liquid (NFL) state 
of gauge theories at non-zero density.

 Fermi liquid (FL) state described by a confining holographic 
geometry

 Hidden Fermi surfaces can co-exist with Fermi surfaces of 
mesinos, leading to a state with partial confinement: the 
fractionalized Fermi liquid (FL*)
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