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A conventional 
metal:

the Fermi liquid 
with Fermi 

surface of size 
1+p

M. Platé, J. D. F. Mottershead, I. S. Elfimov, D. C. Peets, Ruixing Liang, D. A. Bonn, W. N. Hardy,
S. Chiuzbaian, M. Falub, M. Shi, L. Patthey, and A. Damascelli, Phys. Rev. Lett. 95, 077001 (2005)
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Pseudogap 
metal 

at low p
Many indications that 
this metal behaves like 
a Fermi liquid, but with 

Fermi surface size p 
and not 1+p.

S. Badoux, W. Tabis, F. Laliberté, G. Grissonnanche, B. Vignolle, D. Vignolles, J. Béard, D.A. Bonn,
W.N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust, Nature 531, 210 (2016).
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Pseudogap 
metal 

at low p
Many indications that 
this metal behaves like 
a Fermi liquid, but with 

Fermi surface size p 
and not 1+p.

If present at T=0, a 
metal with a size p 
Fermi surface (and 

translational symmetry 
preserved) must have 

topological order

T. Senthil, M. Vojta and S. Sachdev, PRB 69, 035111 (2004)
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Pseudogap 
metal 

at low p
Lattice gauge theory 

for a metal with 
topological order 
co-existing with 

broken time-reversal 
and inversion 

symmetries, and 
Ising-nematic order 

S. Sachdev and S. Chatterjee, arXiv:1703.00014
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Gauge theory 
for a 

topological 
phase 

transition, 
and 

for the strange 
metal (SM)

S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, PRB 80, 155129 (2009); D. Chowdhury and S. Sachdev,

PRB 91, 115123 (2015); S. Sachdev and D. Chowdhury, arXiv:1605.03579.



Insulators and metals with 

topological order

and breaking of 

time-reversal/inversion/lattice-rotation 

symmetry



Begin with the “spin-fermion” model. Electrons ci↵ on the square

lattice with dispersion
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where ⌘i = ±1 on the two sublattices.

When �

`
(i) =constant independent of i, we have long-range AFM,

and a gap in the fermion spectrum at the anti-nodes.
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(A) Antiferromagnetic 
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LGW-Hertz criticality
of antiferromagnetism



(A) Antiferromagnetic 
metal

(B) Fermi liquid with 
large Fermi surface

Hertz criticality
of antiferromagnetism

Increasing SDW orderIncreasing SDW order

Criticality in Fe-based and 
electron-doped-cuprate 

materials 
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Can we get a stable zero temperature state 

with “fluctuating antiferromagnetism” and a 

small Fermi surface (and so a gap near the 

anti-nodes) ?



Can we get a stable zero temperature state 

with “fluctuating antiferromagnetism” and a 

small Fermi surface (and so a gap near the 

anti-nodes) ?

Yes



For fluctuating antiferromagnetism, we transform to a
rotating reference frame using the SU(2) rotation Ri

✓
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ci#

◆
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◆
,

in terms of fermionic “chargons”  s and a Higgs field Ha(i)

�`�`(i) = Ri �
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The Higgs field is the AFM order in the rotating reference frame.
Note that this representation is ambiguous up to a
SU(2) gauge transformation, Vi
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Fluctuating antiferromagnetism

The simplest e↵ective Hamiltonian for the fermionic chargons is
the same as that for the electrons, with the AFM order replaced
by the Higgs field.

H = �
X
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IF we can transform to a rotating reference frame in whichHa(i) =
a constant independent of i and time, THEN the  fermions in
the presence of fluctuating AFM will inherit the anti-nodal gap of
the electrons in the presence of static AFM.
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Fluctuating antiferromagnetism
We cannot always find a single-valued SU(2) rotation Ri to make
the Higgs field Ha(i) a constant !

n-fold 
vortex in 

AFM order

A.V. Chubukov, T. Senthil and S. Sachdev, 
PRL 72, 2089 (1994);

S. Sachdev, E. Berg, S. Chatterjee, 
and Y. Schattner, PRB 94, 115147 (2016)
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n-fold 
vortex in 

AFM order

R

(�1)nR

A.V. Chubukov, T. Senthil and S. Sachdev, 
PRL 72, 2089 (1994);

S. Sachdev, E. Berg, S. Chatterjee, 
and Y. Schattner, PRB 94, 115147 (2016)



We cannot always find a single-valued SU(2) rotation Ri to make
the Higgs field Ha(i) a constant !

n-fold 
vortex in 

AFM order

R

(�1)nR

Topological order

Vortices with n odd must be suppressed: such a metal with
“fluctuating antiferromagnetism” has Z2 TOPOLOGICAL
ORDER and fermions which inherit the “pocket” Fermi
surfaces of the antiferromagnetic metal i.e. a pseudogap.
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(D) SU(2) ACL eventually 
unstable to pairing and 
confinement
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Higgs criticality:
Deconfined SU(2) 
gauge theory with 
large Fermi surface

Global phase diagram

Increasing SDW order

Proposal for optimal 
doping criticality in hole-

doped cuprates 



Topological order

More generally, the e↵ective Hamiltonian for the fermionic char-
gons can also have non-trivial SU(2) gauge connections U⇢(i) along
with the Higgs field Ha(i).
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gauge-invariant fluxes which can break one or

more of time-reversal, inversion, and lattice

rotation symmetries.



Topological order

Such a gauge-connection can induce various

gauge-invariant fluxes which can break one or

more of time-reversal, inversion, and lattice

rotation symmetries.

ji k

l m n

Omj = iTr (�aUmjUjkUkm)Ha(m)

� iTr (�aUjmUmnUnj)H
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Gauge-invariant combinations of
Higgs fields and gauge
connections which are

proportional to the electrical
current on links

S. Sachdev and S. Chatterjee, arXiv:1703.00014
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Topological order

States with topological order can have these patterns of

spontaneous currents, while preserving translational

symmetry. Both patterns are consistent with present

neutron and light scattering experiments. Both patterns

have Ising-nematic order: the Ising-nematic order of (a)

is similar to that observed in the cuprates.

S. Sachdev and S. Chatterjee, arXiv:1703.00014
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(C) Metal with Z2 
topological order and 
discrete symmetry 
breaking



Solvable models of disordered metals 

without quasiparticle excitations



Quantum matter without quasiparticles:

No quasiparticle structure to excitations.

But how can we be sure that no 
quasiparticles exist in a given system? 

Perhaps there are some exotic quasiparticles 
inaccessible to current experiments……..

Consider how rapidly the system
loses “phase coherence”,

reaches local thermal equilibrium,
or becomes “chaotic”



K. Damle and S. Sachdev, PRB 56, 8714 (1997)                 
S. Sachdev, Quantum Phase Transitions, Cambridge (1999)    

J. Zaanen, Nature 430, 512 (2004)

Local thermal equilibration or

phase coherence time, ⌧':

• There is an lower bound on ⌧' in all many-body quantum

systems as T ! 0,

⌧' > C
~

kBT
,

where C is a T -independent constant. Systems

without quasiparticles have ⌧' ⇠ ~/(kBT ).

• In systems with quasiparticles, ⌧' is parametrically larger

at low T ;
e.g. in Fermi liquids ⌧' ⇠ 1/T 2

,

and in gapped insulators ⌧' ⇠ e�/(kBT )
where � is the

energy gap.



A. I. Larkin and Y. N. Ovchinnikov, JETP 28, 6 (1969)

J. Maldacena, S. H. Shenker and D. Stanford, arXiv:1503.01409 

A bound on quantum chaos:

• In classical chaos, we measure the sensitivity of the position at time t,

q(t), to variations in the initial position, q(0), i.e. we measure

✓
@q(t)

@q(0)

◆2

= ({q(t), p(0)}P.B.)
2

• By analogy, we define ⌧L as the Lyapunov time over which the wave-

function of a quantum system is scrambled by an initial perturbation.

This scrambling can be measured by

⌧���[ ˆA(x, t),

ˆ

B(0, 0)]

���
2
�

⇠ exp

✓
1

⌧L


t� |x|

vB

�◆
,

where vB is the ‘butterfly velocity’. This time ⌧L was argued to obey

lower bound

⌧L � 1

2⇡

~
kBT

.

There is no analogous bound in classical mechanics.



A. I. Larkin and Y. N. Ovchinnikov, JETP 28, 6 (1969)

J. Maldacena, S. H. Shenker and D. Stanford, arXiv:1503.01409 

A bound on quantum chaos:

• In classical chaos, we measure the sensitivity of the position at time t,

q(t), to variations in the initial position, q(0), i.e. we measure

✓
@q(t)

@q(0)

◆2

= ({q(t), p(0)}P.B.)
2

• By analogy, we define ⌧L as the Lyapunov time over which the wave-

function of a quantum system is scrambled by an initial perturbation.

This scrambling can be measured by

⌧���[ ˆA(x, t),

ˆ

B(0, 0)]

���
2
�

⇠ exp

✓
1

⌧L


t� |x|

vB

�◆
,

where vB is the ‘butterfly velocity’. This time ⌧L was argued to obey

lower bound

⌧L � 1

2⇡

~
kBT

.

There is no analogous bound in classical mechanics.

Quantum matter without quasiparticles

⇡ fastest possible many-body quantum chaos



Quantum matter without quasiparticles:
The Sachdev-Ye-Kitaev 

(SYK) models
Black holes with 
AdS2 horizons

Fermi surface coupled 
to a gauge field

L[ , a] =  †
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� µ

◆
 +

1

2g2
(r⇥ ~a)2



Quantum matter without quasiparticles:
The Sachdev-Ye-Kitaev 

(SYK) models
Black holes with 
AdS2 horizons

Fermi surface coupled 
to a gauge field
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⌧L: the Lyapunov time to reach quantum chaos
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~
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Quantum matter without quasiparticles:
The Sachdev-Ye-Kitaev 

(SYK) models
Black holes with 
AdS2 horizons

Fermi surface coupled 
to a gauge field

L[ , a] =  †
✓
@⌧ � ia⌧ � (r� i~a)2

2m
� µ

◆
 +

1

2g2
(r⇥ ~a)2

Same low 
energy theory
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(2N)3/2

NX
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†
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†
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A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)

S. Sachdev and J. Ye, PRL 70, 3339 (1993)

Jij;k` are independent random variables with Jij;k` = 0 and |Jij;k`|2 = J2

N ! 1 yields critical strange metal.

SYK model



S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

Feynman graph expansion in Jij.., and graph-by-graph average,

yields exact equations in the large N limit:

G(i!) =
1

i! + µ� ⌃(i!)
, ⌃(⌧) = �J2G2

(⌧)G(�⌧)

G(⌧ = 0

�
) = Q.

Low frequency analysis shows that the solutions must be gapless

and obey

⌃(z) = µ� 1

A

p
z + . . . , G(z) =

Ap
z

for some complex A. The ground state is a non-Fermi liquid, with

a continuously variable density Q.

SYK model



S. Sachdev, PRL 105, 151602 (2010)

SYK and AdS2

A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001)

• Non-zero GPS entropy as T ! 0, S(T ! 0) = NS0 + . . .
Not a ground state degeneracy: due to an exponen-
tially small (in N) many-body level spacing at all energies
down to the ground state energy.

• This entropy, and other dynamic correlators of the SYK
models, imply that the SYK model is holographically dual
to black holes with an AdS2 horizon. The Bekenstein-
Hawking entropy of the black hole equals NS0:

GPS = BH.
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Einstein-Maxwell theory

+ cosmological constant

GPS 
entropy

⇣
~x

⇣ = 1

charge
density Q

BH 
entropy

SYK and AdS2

S. Sachdev, PRL 105, 151602 (2010)

AdS2 ⇥ T2

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

Mapping to SYK applies when temperature ⌧ 1/(size of T2
)

T2



Einstein-Maxwell theory

+ cosmological constant

⇣
~x

⇣ = 1

charge
density Q

SYK and AdS2

AdS2 ⇥ T2

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

Mapping to SYK applies when temperature ⌧ 1/(size of T2
)

T2

Same long-time e↵ective action

for energy and number fluctuations,

involving Schwarzian derivatives of f(⌧).

A. Kitaev, KITP talk (2015; J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857;                               
K. Jensen, arXiv:1605.06098; J. Engelsoy, T.G. Mertens, and H. Verlinde, arXiv:1606.03438



One can also derive the thermodynamic properties from the large-N saddle point free

energy:

F

N
=

1

�


� log Pf (@⌧ � ⌃) +

1

2

Z
d⌧
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d⌧
2

✓
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4
G(⌧
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, ⌧
2

)4
◆�

(8)

= U � S
0

T � �

2
T 2 + . . . (9)

In the second line we write the free energy in a low temperature expansion,3 where U ⇡
�0.0406J is the ground state energy, S

0

⇡ 0.232 is the zero temperature entropy [32, 4],

and �T = cv = ⇡↵
K

16

p
2�J

⇡ 0.396
�J

is the specific heat [11]. The entropy term can be derived

by inserting the conformal saddle point solution (2) in the e↵ective action. The specific

heat can be derived from knowledge of the leading (in 1/�J) correction to the conformal

saddle, but the energy requires the exact (numerical) finite �J solution.

3 The generalized SYK model

In this section, we will present a simple way to generalize the SYK model to higher di-

mensions while keeping the solvable properties of the model in the large-N limit. For

concreteness of the presentation, in this section we focus on a (1 + 1)-dimensional ex-

ample, which describes a one-dimensional array of SYK models with coupling between

neighboring sites. It should be clear how to generalize, and we will discuss more details of

the generalization to arbitrary dimensions and generic graphs in section 6.

3.1 Definition of the chain model

k

j

J 0
jklm

m

l
k l

j m

Jjklm

Figure 1: A chain of coupled SYK sites: each site contains N � 1 fermion with SYK
interaction. The coupling between nearest neighbor sites are four fermion interaction with
two from each site.

3Starting at T 3.77, this expansion is expected to also involve non-integer powers given by the dimensions
of irrelevant operators in the model.
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Matching correlators for thermoelectric di↵usion,

and quantum chaos

⌧L = ~/(2⇡kBT ), vB ⇠ T 1/2
,

and thermal di↵usivity DE = v2B⌧L
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Quantum matter without quasiparticles:
The Sachdev-Ye-Kitaev 

(SYK) models
Black holes with 
AdS2 horizons

Fermi surface coupled 
to a gauge field

L[ , a] =  †
✓
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2m
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vB : the “butterfly velocity” for the spatial propagation of chaos

⌧L: the Lyapunov time to reach quantum chaos

Thermal di↵usivity, DE :

DE = (universal number) ⇥ v2B⌧L
in all three models



• Quantum chaos is intimately linked to the loss of

phase coherence from electron-electron interactions.

As the time derivative of the local phase is deter-

mined by the local energy, phase fluctuations and

chaos are linked to interaction-induced energy fluc-

tuations, and hence thermal di↵usivity.


