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Elementary excitations of a d-wave 
superconductor

(C) S=1 Bosonic, resonant collective mode

(A) S=0 Cooper pairs, phase fluctuations
Negligible below Tc except near a T=0 
superconductor-insulator transition.
Proliferate above Tc due to free vortex density.

(B) S=1/2 Fermionic quasiparticles
Ψh : strongly paired fermions near (π,0), (0,π) 
have an energy gap ~ 30-40 meV

Ψ1,2 : gapless fermions near the nodes of the 
superconducting gap at  ( , ) with 0.391K K K π± ± =

S(Q,ω)
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pure 0 at 0TΓ ≈ =

Represented by       , a vector 
field measuring the strength of 
antiferromagnetic spin 
fluctuations near Q
Damping is small at T=0

( , )π π≈

αφ

(Theory generalizes to the cases with 
incommensurate Q and                )                     pure 0Γ ≠
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Constraints from momentum conservation

Ψh : strongly coupled to      and phase fluctuations
(leads to strong damping above Tc, and coherent pairing       

and gap formation below Tc)
Ψ1,2 : decoupled from     and phase fluctuations

(absence of damping and pairing ?)

αφ

αφ



I. Zero temperature broadening of 
resonant collective mode      by 
impurities: comparison with neutron 
scattering experiments of Fong et al
Phys. Rev. Lett. 82, 1939 (1999)

II. Intrinsic inelastic lifetime of 
nodal quasiparticles Ψ1,2 (Valla et 
al Science 285, 2110 (1999) and 
Corson et al cond-mat/0003243): 
critical survey of possible nearby 
quantum-critical points.

αφ

Independent low energy quantum field 
theories for the      and the Ψ1,2 αφ



Effect of arbitrary localized deformations
(�impurities�) of density nimp

Each impurity is characterized 
by an integer/half-odd-integer S

0 As res →∆

�
�

�
�
�

�
�
�

	


�

� ∆+��
�

	



�

�

∆
=

∆
Γ

J
OCcn S

res

2

res
imp

res

imp �

Correlation length ξ

SCS on only dependent  numbers  Universal→
1  ;  0 2/10 ≈= CC

Zn impurities in YBCO have S=1/2

�Swiss-cheese� model of quantum impurities
(Uemura): 

Inverse Q of resonance ~ fractional volume of 
holes in Swiss cheese. 

I. Zero temperature broadening of resonant 
collective mode by impurities



(A) Insulating Neel state (or collinear SDW at 
wavevector Q)               insulating quantum 
paramagnet

⇔
(B) d-wave superconductor with collinear 

SDW at wavevector Q d-wave 
superconductor (paramagnet)

⇔

resAs 0 there is a quantum phase transition
to a magnetically ordered state

∆ →

Transition (B) is in the same universality class as 
(A) provided Ψh fermions remain gapped at 

quantum-critical point.



Why appeal to proximity to a quantum 
phase transition ?

~  φα

(a)

(b)

(c)

φα ~ S=1 bound state in particle-hole channel at the 
antiferromagnetic wavevector

Quantum field theory of critical point allows systematic 
treatment of the strongly relevant multi-point 

interactions in (b) and (c).



1. (A) Paramagnetic and Neel ground states in two   
dimensions --- coupled-ladder antiferromagnet.

Field theory of quantum phase transition.

2. Non-magnetic impurities (Zn or Li) in two-
dimensional paramagnets. 

3. Application to (B) d-wave superconductors.
Comparison with, and predictions for, expts



1. Paramagnetic and Neel states in insulators

S=1/2 spins on coupled 2-leg ladders
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Follow ground state as a function of λ

10 ≤≤ λ

JλJ

(Katoh and Imada; 
Tworzydlo, Osman, van Duin and Zaanen)



 close to 1λ
Square lattice antiferromagnet

Experimental realization: 42CuOLa

Ground state has long-range
magnetic (Neel) order 

( ) 0 ≠−= + NS yx ii
i

�

Excitations:  2 spin waves
Quasiclassical wave dynamics at low T

(Chakravarty et al, 1989;
Tyc et al, 1989)



 close to 0λ
Weakly coupled ladders

Paramagnetic ground state iS =
�

( )↓↑−↑↓=
2

1

Excitation: S=1, φα particle (collective mode)

Energy dispersion away from
antiferromagnetic wavevector
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λ0 1λc
Quantum 
paramagnet

0=S
�

Neel 
state

0NS ≠
�

Spin gap ∆res

Neel order 0N



Nearly-critical paramagnets 

λ is close to λ c

Quantum field theory:

αφ 3-component antiferromagnetic 
order parameter

Oscillations of       about zero (for r > 0)  
spin-1 collective mode

αφ

T=0 spectrum

ω

),(Im ωχ k

r > 0               λ < λ c
r < 0               λ > λ c

Sb =
∫

ddxdτ
[
1

2

(
(∇xφα)2 + c2(∂τφα)2 + rφ2

α

)

+
g

4!
(φ2

α)2
]



Coupling g approaches fixed-point value under
renormalization group flow: beta function (ε = 3-d) :

Only relevant perturbation � r
strength is measured by the spin gap ∆

∆res and c completely determine entire 
spectrum of quasi-particle peak and 
multiparticle continua, the S matrices for 
scattering between the excitations, 
and T > 0 modifications.

β(g) = −εg +
11g2

6
− 23g3

12
+ O(g4)



2. Quantum impurities in nearly-critical
paramagnets

Make anyany localized deformation of 
antiferromagnet; e.g. remove a spin

X

Susceptibility impbA χχχ +=
(A = area of system)

In paramagnetic phase as 0→T

Tk
b

Be
c
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For a general impurity impχ defines the value of S



Orientation of �impurity� spin -- )(ταn

Action of �impurity� spin

)(nAα

Boundary quantum field theory: 

(unit vector)

Dirac monopole function

Recall -

Sb + Simp

Simp =
∫

dτ

[
iSAα(n)

dnα

dτ
− γSnα(τ)φα(x = 0, τ)

]

Sb =
∫

ddxdτ
[
1

2

(
(∇xφα)2 + c2(∂τφα)2 + rφ2

α

)

+
g

4!
(φ2

α)2
]



Coupling γ approaches also approaches a fixed-point 
value under the renormalization group flow

No new relevant perturbations on the boundary;
All other boundary perturbations are irrelevant �

e.g. 

∆res and c completely determine spin 
dynamics near an impurity �

No new parameters are necessary !

Beta function:

),0(2 τφτλ α =� xd

β(γ) = −εγ

2
+ γ3 − γ5 +

5g2γ

144

+
π2

3

(
S(S + 1) − 1

3

)
gγ3 + O

(
(γ,

√
g)7

)

(This is the simplest allowed boundary perturbation
for S=0 � its irrelevance implies C0 = 0)

Finite density of impurities impn

Relevant perturbation � strength determined by only 
energy scale that is linear in         and contains only 
bulk parameters

impn
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2
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∆
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(Sengupta, 97
Sachdev+Ye, 93
Smith+Si 99)



Fate of collective mode peak
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Without impurities

With impurities

Φ Universal scaling function. We computed
it in a �self-consistent, non-crossing� approximation 

Predictions: Half-width of line 
Universal asymmetric lineshape

Γ≈



Zn impurity in

Moments measured by 
analysis of Knight shifts

M.-H. Julien, T. Feher,         
M. Horvatic, C. Berthier,
O. N. Bakharev, P. Segransan, 
G. Collin, and J.-F. Marucco,
Phys. Rev. Lett. 84, 3422 
(2000); also earlier work of 
the group of H. Alloul

6.732 OCuYBa

Berry phases of precessing spins do not cancel 
between the sublattices in the vicinity of the 
impurity: net uncancelled phase of S=1/2

3. Application to d-wave superconductors 
(YBCO)

Pepin and Lee: Modeled Zn impurity as a potential scatterer 
in the unitarity limit, and obtained quasi-bound states at the 
Fermi level.
Our approach: Each bound state captures only one electron 
and this yields a Berry phase of S=1/2; residual potential 
scattering of quasiparticles is not in the unitarity limit.



Additional low-energy spin fluctuations in a 
d-wave superconductor 

Nodal quasiparticles Ψ

ΨΨ α
α σ*nSJ K

There is a Kondo coupling between moment around 
impurity and Ψ:
However, because density of states vanishes linearly at the 
Fermi level, there is no Kondo screening for any finite JK
(below a finite JK) with (without) particle-hole symmetry

(Withoff+Fradkin, Chen+Jayaprakash, Buxton+Ingersent)



H. F. Fong, P. Bourges, 
Y. Sidis, L. P. Regnault, 
J. Bossy,  A. Ivanov, 
D.L. Milius, I. A. Aksay, 
and B. Keimer,        
Phys. Rev. Lett. 82, 1939 
(1999)

 Zn0.5%  OCuYBa 732 +

0.125    meV, 5   
eV 2.0                
meV 40                

005.0                
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Quoted half-width = 4.25 meV



Photoemission on BSSCO 
(Valla et al Science 285, 2110 (1999))

Quantum-critical 
damping of quasi-
particles along (1,1) 

Quasi-particles 
sharp along (1,0) 

II. Intrinsic inelastic lifetime of nodal
quasiparticles Ψ1,2



TkTk BB <Σ ω�for    ~Im

TkB>Σ ωω �� for    ~Im
�Marginal Fermi liquid� (Varma et al 1989) 
but only for nodal quasi-particles � strong k
dependence at low temperatures

Origin of inelastic scattering ?

In a Fermi liquid 
2~Im TΣ

In a BCS d-wave superconductor 
3~Im TΣ



(Corson et al cond-mat/0003243)
THz conductivity of BSCCO

Quantum-critical damping of 
quasi-particles



Proximity to a quantum-critical point

(Crossovers analogous to those near quantum phase 
transitions in boson models 

Weichmann et al 1986, Chakravarty et al 1989) 

Relaxational dynamics in quantum critical region 
(Sachdev+Ye, 1992)
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Nodal quasiparticle Green�s function
k wavevector separation from node

T

ggc

Superconducting Tc

d-wave 
superconductor

Superconducting
state X 

Quantum
criticalXT



Necessary conditions

1. Quantum-critical point should be below its 
upper-critical dimension and obey 
hyperscaling. 

2. Critical field theory should not be free �
required to obtain damping in the scaling limit. 
Combined with (1) this implies that 
characteristic relaxation times ~

3. Nodal quasi-particles should be part of the 
critical-field theory.

4. Quasi-particles along (1,0), (0,1) should not 
couple to critical degrees of freedom.

TkB/�



1. d-wave superconductors

2. Candidates for X:

a) Staggered-flux (or orbital 
antiferromagnet) order + d-wave 
superconductivity (breaks TTTT � time-
reversal symmetry).

b) Superconductivity + charge density 
order (charge stripes)

c) (d+is)-wave superconductivity 
(breaks TTTT)

d) wave superconductivity 
(breaks TTTT)

xyyx idd +− 22



1. d-wave superconductors

Gapless Fermi Points in a 
d-wave superconductor at
wavevectors 

K=0.391π
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spaceNambu in  matrices Pauli are, zx ττ

SΨ =
∫ ddk

(2π)d
T

∑
ωn

Ψ†
1 (−iωn + vF kxτ

z + v∆kyτ
x) Ψ1

+
∫ ddk

(2π)d
T

∑
ωn

Ψ†
2 (−iωn + vF kyτ

z + v∆kxτ
x) Ψ2.

),( KK ±±



2a. Orbital antiferromagnet

Checkerboard pattern of spontaneous currents:

TTTT-breaking Ising order parameter φ

(Nayak, 2000)

(Affleck+Marston 1988, Schulz 1989, 
Wang, Kotliar, Wang, 1990,  Wen+Lee, 1996)

〈c†k+G,ack,a〉 = iφ(cos kx − cos ky) ; G = (π, π)

Sφ =
∫

ddxdτ

[
1

2
(∂τφ)2 +

c2

2
(∇φ)2 +

s0

2
φ2 +

u0

24
φ4

]

For K=π/2, only coupling to nodal quasiparticles
is ~                                  is irrelevant  and leads to2 ;  dd xdζ τφ ζΨΨ�

Ising2 1 2 / 1.83Im ~ ~dT Tν+ −Σ



2b. Charge stripe order

Charge density

[ ]iGy
y

iGx
x ee Φ+ΦRe~δρ

If                 fermions 
do not couple 
efficiently to the 
order parameter and 
are not part of the 
critical theory

KG 2≠

Action for quantum fluctuations of order parameter

SΦ =
∫

ddxdτ
[
|∂τΦx|2 + |∂τΦy|2 + |∇Φx|2 + |∇Φy|2

+ s0

(
|Φx|2 + |Φy|2

)
+

u0

2

(
|Φx|4 + |Φy|4

)
+ v0|Φx|2|Φy|2

]
Coupling to fermions ~
and λ is irrelevant at the critical point

12/3for  ~       
~Im

3) and 2between (

/212

<<
Σ −+

ν

ν

T
T d

ΨΨΦ�
2

a
d xdd τλ

G



2c. (d+is)-wave superconductivity

TTTT-breaking Ising order parameter φ

Effective action:

Efficient coupling to nodal quasi-particles (generically)

Coupling λ0 takes a non-zero fixed-point 
value in the critical field theory

Strong inelastic scattering of nodal-quasiparticles 
in the scaling limit

Nodal quasiparticle lifetime ~

However: strong scattering of quasi-particles also 
along (1,0), (0,1) directions 

TkB/�

(Kotliar, 1989)

〈ck↑c−k↓〉 = ∆0(cos kx − cos ky) + iφ(cos kx + cos ky).

Sφ =
∫

ddxdτ

[
1

2
(∂τφ)2 +

c2

2
(∇φ)2 +

s0

2
φ2 +

u0

24
φ4

]

SΨφ =
∫

ddxdτ
[
λ0φ

(
Ψ†

1τ
yΨ1 + Ψ†

2τ
yΨ2

)]
.



2d. -wave superconductivity

TTTT-breaking Ising order parameter φ

Effective action:

Efficient coupling to nodal quasi-particles (generically)

Coupling λ0 takes a non-zero fixed-point 
value in the critical field theory

Strong inelastic scattering of nodal-quasiparticles 
in the scaling limit

Nodal quasiparticle lifetime ~

Moreover: no scattering of quasi-particles along 
(1,0), (0,1) directions !

TkB/�

xyyx idd +− 22

(Rokhsar 1993, Laughlin 1994)

〈ck↑c−k↓〉 = ∆0(cos kx − cos ky) + iφ sin kx sin ky.

Sφ =
∫

ddxdτ

[
1

2
(∂τφ)2 +

c2

2
(∇φ)2 +

s0

2
φ2 +

u0

24
φ4

]

SΨφ =
∫

ddxdτ
[
λ0φ

(
Ψ†

1τ
yΨ1 − Ψ†

2τ
yΨ2

)]
.



Large N (Sp(N)) phase diagram for time-
reversal symmetry breaking and charge-

ordering in a d-wave superconductor.



Brillouin 
zone

xk

yk

0
0

π

π

Nodal quasiparticles:

Below Tc : damping from fluctuations to                   
order

Above Tc: same mechanism applies as long as 
quantum-critical length < superconducting phase 
coherence length. Quasiparticles do not couple to 
phase or SDW fluctuations.

xyyx idd +
− 22

Gapped quasiparticles:

Below Tc : negligible damping

Above Tc: damping from strong coupling to 
superconducting phase and SDW fluctuations.



Conclusions: Part I

1. Universal T=0 damping of S=1 collective 
mode by non-magnetic impurities. 

Linewidth:

independent of impurity parameters.

2. New interacting boundary conformal field 
theory in 2+1 dimensions

3. Universal irrational spin near the impurity 
at the critical point.
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Conclusions: Part II

Classification of quantum-critical points 
leading to critical damping of quasiparticles 
in superconductor

Most attractive possibility: T breaking 
transition from a             superconductor to 
a                         superconductor

Leads to quantum-critical damping along 
(1,1), and no damping along (1,0), with no 
unnatural fine-tuning.

22 yxd
−

xyyx idd +
− 22

Note: stable ground state of cuprates can 
always be a            superconductor; only need 
thermal/quantum fluctuations to                        
order in quantum-critical region.

22 yxd
−

xyyx idd +
− 22

Experimental update: Tafuri+Kirtley (cond-mat/0003106) 
claim signals of TTTT breaking near non-magnetic impurities 
in YBCO films


