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A. Magnetic qguantum phase transitions in
“dimerized” Mott insulators:

Landau-Ginzburg-Wilson (LGW) theory:

Second-order phase transitions described by
fluctuations of an order parameter
assoclated with a broken symmetry




TICuCl,

M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, cond-mat/0309440.
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S=1/2 spins on coupled dimers
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Weakly coupled dimers
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FIG. 1. Measured neutron profiles in the a*c* plane of TICuCl;
for i=(1.35.0,0), 7i=100,0,3.15) [rlu]. The spectrum at T=15K



Coupled Dimer Antiferromagnet




Weakly dimerized square lattice
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A closeto 1 Weakly dimerized square lattice

I\

, i, 1, i, i i Excitations:

: ofal ® 2 spin waves (magnons)
. :"" . ;o . 5p:\/Cx2px2+Cy2py2
Ground state has long-range spin density wave <(5> -+ 0

(Neel) order at wavevector K= (,m)

- . _ S
spin density wave order parameter: ¢ = 7, ?I

, 1. =1 on two sublattices
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A1 A, Pressure in TICuCl,

The method of bond operators (S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323

(1990)) provides a quantitative description of spin excitations in TICuCl, across the

quantum phase transition (M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist,
Phys. Rev. Lett. 89, 077203 (2002))



L GW theory for quantum criticality

Landau-Ginzburg-Wilson theory: write down an effective action
for the antiferromagnetic order parameter ¢ by expanding in powers
of ¢ and its spatial and temporal derivatives, while preserving
all symmetries of the microscopic Hamiltonian

S¢ _ deXdT[%((Vx(ﬁ)z +c° (@T(ﬁ)z +(/1C —/1)(52)4—%((52 )2}

S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989)



L GW theory for quantum criticality

Landau-Ginzburg-Wilson theory: write down an effective action
for the antiferromagnetic order parameter ¢ by expanding in powers
of ¢ and its spatial and temporal derivatives, while preserving
all symmetries of the microscopic Hamiltonian

S¢ _ deXdT[%((Vx(ﬁ)z +c° (@T(ﬁ)z +(/1C —/1)(52)4—%((52 )2}

S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989)

For A < 4., oscillations of ¢ about ¢ =0
constitute the triplon excitation

A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B 49, 11919 (1994)



Key reason for validity of LGW theory

Classical statistical mechanics: There is a simple high
temperature disordered state with (¢)=0 and
exponentially decaying correlations

Quantum mechanics: There Is a "quantum disordered"
non-degenerate ground state with (¢)=0 and an
energy gap to all excitations




B. Mott insulators with
spin S=1/2 per unit cell:

Berry phases, bond order, and the
breakdown of the LGW paradigm
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Mott insulator with one S=1/2 spin per unit cell

Destroy Neel order by perturbations which preserve full square
lattice symmetry e.g. second-neighbor or ring exchange.
The strength of this perturbation is measured by a coupling g.

Small g = ground state has Neel order with (@) # 0

Large g = paramagnetic ground state with (¢) =0
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Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the
sites of a cubic lattice of points a
Recall ¢, =21,S, - ¢,=(0,0,1) in classical Neel state;

n, — =1 on two square sublattices ;
A,, — half oriented area of spherical triangle

formed by ¢,, ¢,,,, and an arbitrary reference point ¢,

Do
2Aa,u _)2Aa,u_7/a+y+7/a 7/3 //7/a+,u
Change in choice of @, is like —
a “gauge transformation” P @
atu

The area of the triangle is uncertain modulo 4z, and the action
has to be invariantunder A, — A, +27




Quantum theory for destruction of Neel order

Ingredient missing from LGW theory:
Spin Berry Phases

exp(iZaIUaAafj

Sum of Berry phases of
all spins on the square
lattice.




Quantum theory for destruction of Neel order

Partition function on cubic lattice
o o l— . .
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a a, u

LGW theory: weights in partition function are those of a
classical ferromagnet at a “temperature” g

Small g = ground state has Neel order with (@) # 0

Large g = paramagnetic ground state with (¢) =0



Quantum theory for destruction of Neel order

Partition function on cubic lattice
. . 1 L .
Z=[1[dg,0(: —1)exp[52¢a Pa, +IZf7aAaT]
a a,u a

Modulus of weights in partition function: those of a
classical ferromagnet at a “temperature” g

Small g = ground state has Neel order with (@) # 0

Large g = paramagnetic ground state with (¢) =0

Berry phases lead to large cancellations between different

time histories — need an effective action for A, at large g
S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)



Simplest large g effective action for the A, ,

Z =1;”dAau exp(Z—iZZD:COS(AﬂAaV —AVAaﬂ)”Za:ﬂaAarj

with e°~g*
This is compact QED in 3 spacetime dimensions with
static charges +1 on two sublattices.

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990).

S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)



Exact duality transform on periodic Gaussian (“Villain”) action for compact
QED yields a representation in terms of a Coulomb gas of monopoles

o s mj'rnjf :
Zdual = Z exp (_@ Z ITj > T'j,r| 4 271 Z mJXJ)

with the m; integer monopole charges. Each monopole carries a Berry phase
(F.D.M. Haldane, Phys. Rev. Lett. 61, 1029 (1988)) determined by the fixed
X; =0,1/4,1/2,3/4 on the four dual sublattices.

F =

3/4 1/2 3/4 1/2

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).



Alternative representation is in terms of a “height” model

e :
Bl = Z exp (_5 Z (A h; — A#Xj)‘z)

{hs}

)

with the h; integer heights.
The Berry phases now lead to height ‘offsets’ X; = 0,1/4,1/2,3/4 on the

four dual sublattices.

3/4 1/2 3/4 1/2



For large €2, low energy height configurations are in exact one-to-
one correspondence with nearest-neighbor valence bond pairings of
the sites square lattice

o—olo—o o —o
N N ()
A o—o—
(20 N )
iBRDDTD
_)
mmmmﬂ

There is no roughening transition for three dimensional interfaces, which
are smooth for all couplings

D.S. Fisher and J.D. Weeks, Phys. Rev. Lett. 50, 1077 (1983).

—> There is a definite average height of the interface
— Ground state has bond order.

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).




Bond order

? O——— O
Neel order (W pong ) # 0 -
(p)#0 Not present in
LGW theory

of ¢ order




