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A. Magnetic quantum phase transitions in 
“dimerized” Mott insulators: 

Landau-Ginzburg-Wilson (LGW) theory:
Second-order phase transitions described by 

fluctuations of an order parameter
associated with a broken symmetry
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close to 0λ Weakly coupled dimers

( )↓↑−↑↓=
2

1

Excitation: S=1 triplon
(exciton, spin collective mode)

Energy dispersion away from
antiferromagnetic wavevector
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TlCuCl3

N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, 
H.-U. Güdel, K. Krämer and   H. Mutka, Phys. Rev. 
B 63 172414 (2001).
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Excitations:  
2 spin waves (magnons)
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Ground state has long-range spin density wave 
(Néel) order at wavevector K= (π,π) 

0 ϕ ≠

spin density wave order parameter:   ;  1 on two sublatticesi
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TlCuCl3

J. Phys. Soc. Jpn 72, 1026 (2003)



λc = 0.52337(3)
M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, 

Phys. Rev. B 65, 014407 (2002)
T=0

λ 1 cλ Pressure in TlCuCl3

Quantum paramagnetNéel state
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The method of bond operators (S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 
(1990)) provides a quantitative description of spin excitations in TlCuCl3 across the 
quantum phase transition (M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, 

Phys. Rev. Lett. 89, 077203 (2002))



LGW theory for quantum criticality

write down an effective action 
for the antiferromagnetic order parameter  by expanding in powers 

of  and its spatial and temporal d

Landau-Ginzburg-Wilson theor

erivatives, while preserving

y: 

all s

ϕ
ϕ

ymmetries of the microscopic Hamiltonian

( ) ( ) ( )( ) ( )22 22 2 2 21
2 4!x c

ud xd cSϕ ττ ϕ ϕ λ λ ϕ ϕ⎡ ⎤= ∇ + ∂ + − +⎢ ⎥⎣ ⎦∫
S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989) 



LGW theory for quantum criticality

write down an effective action 
for the antiferromagnetic order parameter  by expanding in powers 

of  and its spatial and temporal d

Landau-Ginzburg-Wilson theor

erivatives, while preserving

y: 

all s

ϕ
ϕ

ymmetries of the microscopic Hamiltonian

( ) ( ) ( )( ) ( )22 22 2 2 21
2 4!x c

ud xd cSϕ ττ ϕ ϕ λ λ ϕ ϕ⎡ ⎤= ∇ + ∂ + − +⎢ ⎥⎣ ⎦∫
S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989) 

For , oscillations of  about 0 
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Key reason for validity of LGW theory 

There is a simple high 
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B. Mott insulators with                           
spin S=1/2 per unit cell:

Berry phases, bond order, and the 
breakdown of the LGW paradigm
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Partition function on cubic lattice

Modulus of weights in partition function: those of a 
classical ferromagnet at a “temperature” g

Berry phases lead to large cancellations between different 
   time histories  need an effective action for  at large aA gµ→

S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)
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Simplest large g effective action for the Aaµ
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For large e2 , low energy height configurations are in exact one-to-
one correspondence with nearest-neighbor valence bond pairings of 
the sites square lattice

There is no roughening transition for three dimensional interfaces, which 
are smooth for all couplings

⇒
⇒

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

D.S. Fisher and J.D. Weeks, Phys. Rev. Lett. 50, 1077 (1983)
There is a definite average height of the interface
Ground state has bond order.

.
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