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1. Z2 spin liquid on the square lattice 3. FL* metal from a Z2 spin liquid

Confinement transition out of a FL* metal with 
Z2 topological and Ising-nematic order

• Start with the semiclassical ground state of the J1-
J2-J3 antiferromagnet on the square lattice which

has co-planar spiral antiferromagnetic order at the

wavevector (Q, 0).

• Quantum fluctuations across a continuous phase tran-

sition lead to a spin liquid state with Z2 topological

order and long-range Ising-nematic order

• This state can be e�ciently described by Schwinger

boson mean field theory.

N. Read and S. Sachdev, PRL 66, 1773 (1991)
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The spin liquid also has time-reversal symmetry, denoted by T , which will be automatically satisfied

if there exists a gauge choice for which the mean-field ansatz is real.

III. PSG FOR BSR

A. Schwinger boson ansatz

The spin operator can be represented in terms of Schwinger bosons operators b
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where P
G

projects onto states with a single spin, and ⇠
ij

= �⇠
ji

is obtained by diagonalizing Hb

MF

via a Bogoliubov transformation.
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• Excitations of the Z2 spin liquid are

(i) bosonic spinons z↵ ⇠ b↵ + b†↵ and

(ii) bosonic visons, which are Z2 vortices in the Qij .

• The bosonic spinons and visons are mutual semions.

2. From bosonic to fermonic spinons
Symmetry fractionalization 4

Low energy quasiparticles in a Z2 gauge theory

I 4 kinds of excitations, e, m, ✏ and the trivial local
excitation 1

I Have the following fusion rules:

e⇥ e = m⇥m = ✏⇥ ✏ = 1

1⇥ 1 = 1, e⇥ 1 = e,m⇥ 1 = m, ✏⇥ 1 = ✏

e⇥m = ✏, e⇥ ✏ = m,m⇥ ✏ = e

I In the context of spin liquids, e and ✏ are bosonic and
fermionic spinons, and m is the vison, 1 is a local
excitation with integer spin

A.M. Essin and M. Hermele, PRB 87, 104406 (2013)
Y.-M. Lu, G. Y. Cho, A. Vishwanath, 1403.0575
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from mutual semionic statistics between the spinon and vison, these are the non-trivial PSG fusion

rules.

We provide a table for trivial and non-trivial fusion rules, and provide proofs/arguments in the

appendix D.

VII. FERMIONIC ANSATZ

A. General relation between bosonic and fermionic PSGs for rectangular lattice

In the table below, we use the commutation fractionalization relations and anyon fusion rules

to relate bosonic and fermionic ansatz for Z2 spin liquids on a rectangular lattice.

Commutation relation Bosonic PSG Fermionic PSG Vison PSG Twist factor Relation
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Note that we find that ⌘
P

x

P

y

= 1, supporting [7] that in parton constructions this commutation is

not fractionalized.

B. Specific fermionic ansatz

Plugging in the values of p
i

s for the bosonic ansatz, we can find the desired values of ⌘
XY

s for

the fermionic ansatz. Doing so and solving the matrix equations (details in Appendix E), we find

Purely topological properties of Z2 spin liquids:

From the projective transformations of bosonic spinons (e particle)
and the vison (the m particle) under space-group symmetries of the
antiferromagnet, we can determine the projective symmetry trans-
formations of the fermionic spinons (✏ particle). Finally, we can
determine the e↵ective Hamiltonian of the fermionic spinons f↵.

M. Punk, A. Allais, and S. Sachdev,  PNAS 112, 9552 (2015) 

FL* 

Y. Qi and S. Sachdev,  PRB 81, 115129 (2010)

Recent 
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pseudogap 

metal as FL*
in YBCO 
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4.  Confinement transition of a FL* metal 

Symmetry relations for spin liquids on the rectangular lattice

• Dopants in a FL* metal are fermions, c↵, with charge +e and spin

S = 1/2 (the green dimers). So there need not be any low energy

fractionalized excitations.

• The dopants form a Fermi surface of size equal to the dopant density

p.

• The emergent gauge excitations of the Z2 spin liquid, i.e. visons, sur-
vive in the FL* metal. Note that the green and blue dimers together

have the same topological properties as the undoped dimer model.

• The violation of the Luttinger theorem in the FL* metal is justified

by the presence of emergent gauge excitations (i.e. topological order).

• Confinement can be induced by the condensation of the
bosonic bilinear B ⇠ f†

↵

c
↵

or ✏
↵�

f
↵

c
�

.

• This is a “Higgs” transition leading to confinement be-
cause B carries electric Z2 charge.

• The B-condensed (Higgs) state is a superconductor be-
cause the pairing of the f

↵

fermions in the Z2 spin liquid
now induces a pairing of the c

↵

fermions. This pairing
can have d

x

2�y

2 + s symmetry.

• The c
↵

fermions have trivial space group transformations,
and so the projective space group transformations of B
can be deduced from those of the fermionic spinons f

↵

.

• In many cases, the projective transformations of B also
imply density-wave order in the superconductor. This im-
plies there can be a direct second-order transition from the
FL* metal to a confining Fulde-Ferrel-Larkin-Ovchinnikov
(FFLO) state.


