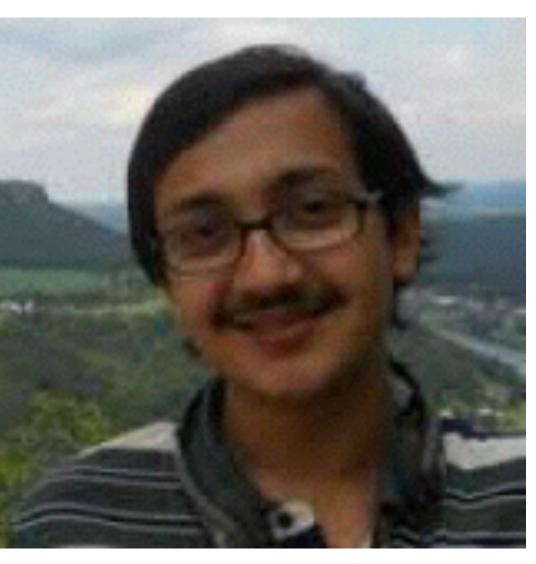
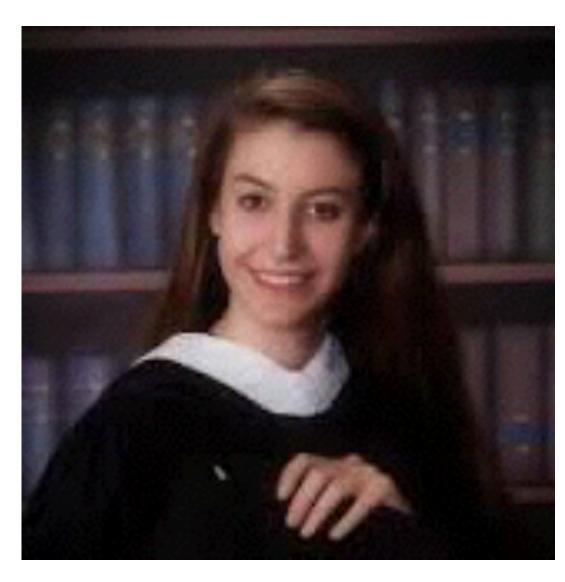


Harvard University and Perimeter Institute





1. Z₂ spin liquid on the square lattice

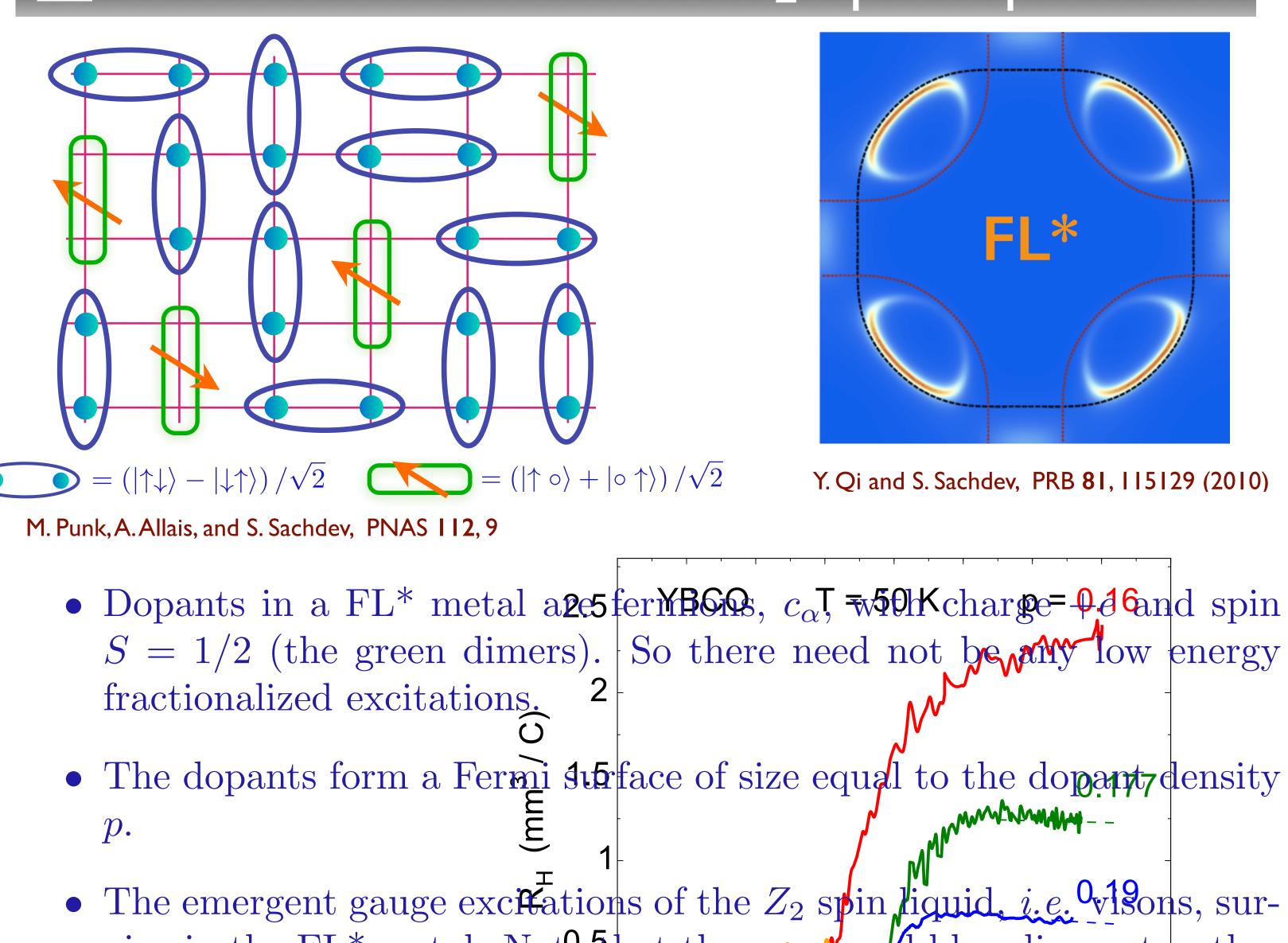
3. FL* metal from a Z_2 spin liquid

N. Read and S. Sachdev, PRL 66, 1773 (1991)

- Start with the semiclassical ground state of the J_1 - J_2 - J_3 antiferromagnet on the square lattice which has co-planar spiral antiferromagnetic order at the wavevector (Q, 0).
- Quantum fluctuations across a continuous phase transition lead to a spin liquid state with Z_2 topological order and long-range Ising-nematic order
- This state can be efficiently described by Schwinger boson mean field theory.

$$H_{MF}^{b} = -\sum_{ij} (Q_{ij}\epsilon_{\alpha\beta}b_{i\alpha}^{\dagger}b_{j\alpha}^{\dagger} + h.c.) + \sum_{i}\lambda_{i}b_{i\alpha}^{\dagger}b_{i\alpha}$$
$$|\Psi^{b}\rangle = P_{G} \exp\left[\sum_{ij}\xi_{ij}\epsilon_{\alpha\beta}b_{i\alpha}^{\dagger}b_{j\beta}^{\dagger}\right]|0\rangle$$

• Excitations of the Z_2 spin liquid are (i) bosonic spinons $z_{\alpha} \sim b_{\alpha} + b_{\alpha}^{\dagger}$ and



vive in the FL* metal. Note that the green and blue dimers together have the same topological properties at the indoped dimergaodel.

Y. Qi and S. Sachdev, PRB 81, 115129 (2010)

FL*

- Dopants in a FL* metal area fer MBGAS, c_{α} , \overline{w} , \overline{w} , c_{α} , \overline{w} , \overline{w} , c_{α} , \overline{w} , S = 1/2 (the green dimens). So there need not be any low energy
- The dopants form a Fermi surface of size equal to the dopant7 density
 - MAMAM _ _
- (*ii*) bosonic visons, which are Z_2 vortices in the Q_{ij} .
- The bosonic spinons and visons are mutual semions.

2. From bosonic to fermonic spinons

Purely topological properties of Z_2 spin liquids:

- ▶ 4 kinds of excitations, e, m, ϵ and the trivial local excitation 1
- ► Have the following fusion rules:

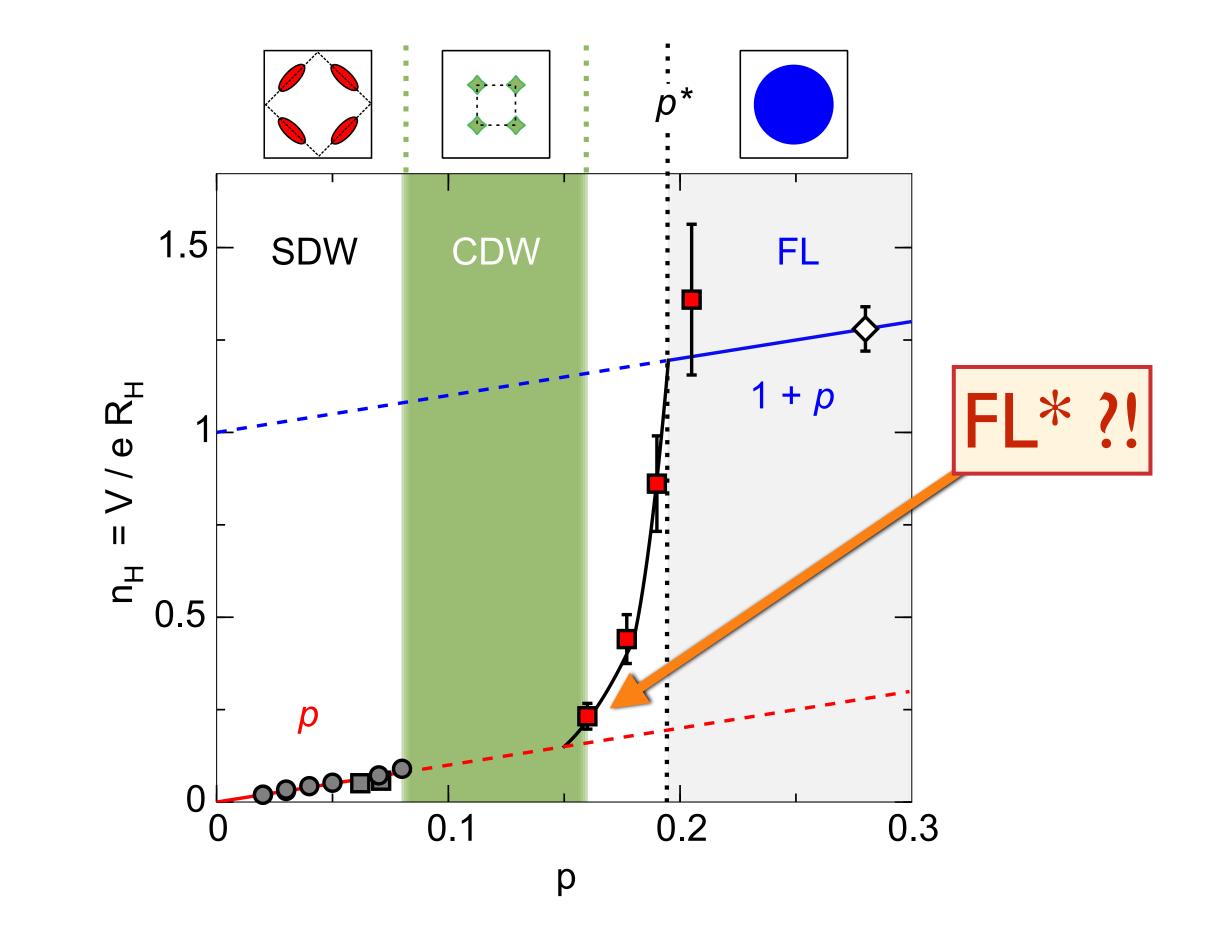
 $e \times e = m \times m = \epsilon \times \epsilon = 1$ $1 \times 1 = 1, e \times 1 = e, m \times 1 = m, \epsilon \times 1 = \epsilon$ $e \times m = \epsilon, e \times \epsilon = m, m \times \epsilon = e$

• In the context of spin liquids, e and ϵ are bosonic and fermionic spinons, and m is the vison, 1 is a local excitation with integer spin

From the projective transformations of bosonic spinons (e particle) and the vison (the m particle) under space-group symmetries of the antiferromagnet, we can determine the projective symmetry transformations of the fermionic spinons (ϵ particle). Finally, we can determine the effective Hamiltonian of the fermionic spinons f_{α} .

• The violation of the Luttinger otheorem in other Field metals is justified by the presence of emergent gauge excitations ($\dot{\pi}$, topological order).

Recent evidence for pseudogap metal as FL* in YBCO Proust-Taillefer-UBC collaboration, Badoux et al. arXiv:1511.08162



4. Confinement transition of a FL* metal

• Confinement can be induced by the condensation of the

A.M. Essin and M. Hermele, PRB 87, 104406 (2013) Y.-M. Lu, G.Y. Cho, A.Vishwanath, 1403.0575

Symmetry relations for spin liquids on the rectangular lattice

Commutation relation	Bosonic PSG	Fermionic PSG	Vison PSG	Twist factor	Relation
$T_x^{-1}T_y^{-1}T_xT_y$	$(-1)^{p_1}$	$\eta_{T_xT_y}$	-1	1	$(-1)^{p_1+1} = \eta_{T_x T_y}$
$P_x^{-1}T_xP_xT_x$	$(-1)^{p_2}$	$\eta_{P_xT_y}$	1	1	$(-1)^{p_2} = \eta_{P_x T_x}$
$P_y^{-1}T_x^{-1}P_yT_x$	$(-1)^{p_3}$	$\eta_{P_yT_x}$	-1	1	$(-1)^{p_3+1} = \eta_{P_y T_x}$
$P_x^{-1}T_y^{-1}P_xT_y$	$(-1)^{p_4}$	$\eta_{P_xT_y}$	-1	1	$(-1)^{p_4+1} = \eta_{P_x T_y}$
$P_y^{-1}T_yP_yT_y$	$(-1)^{p_5}$	$\eta_{P_yT_y}$	1	1	$(-1)^{p_5} = \eta_{P_y T_y}$
P_x^2	$(-1)^{p_6}$	η_{P_x}	1	-1	$(-1)^{p_6+1} = \eta_{P_x}$
P_y^2	$(-1)^{p_7}$	η_{P_y}	1	-1	$(-1)^{p_7+1} = \eta_{P_y}$
$P_x^{-1}P_y^{-1}P_xP_y$	1	$\eta_{P_xP_y}$	-1	-1	$1 = \eta_{P_x P_y}$
\mathcal{T}^2	-1	-1	1	1	1 = 1
$T_x^{-1} \mathcal{T}^{-1} T_x \mathcal{T}$	$(-1)^{p_8}$	$\eta_{\mathcal{T}T_x}$	1	1	$(-1)^{p_8} = \eta_{\mathcal{T}T_x}$
$T_y^{-1} \mathcal{T}^{-1} T_y \mathcal{T}$	$(-1)^{p_9}$	$\eta_{\mathcal{T}T_y}$	1	1	$(-1)^{p_9} = \eta_{\mathcal{T}T_y}$
$P_x^{-1}\mathcal{T}^{-1}P_x\mathcal{T}$	$(-1)^{p_6}$	$\eta_{\mathcal{T}P_x}$	1	-1	$\left (-1)^{p_6+1} = \eta_{\mathcal{T}P_x} \right $
$P_y^{-1}\mathcal{T}^{-1}P_y\mathcal{T}$	$(-1)^{p_7}$	$\eta_{\mathcal{T}P_y}$	1	-1	$\left (-1)^{p_7+1} = \eta_{\mathcal{T}P_y} \right $

bosonic bilinear $B \sim f_{\alpha}^{\dagger} c_{\alpha}$ or $\epsilon_{\alpha\beta} f_{\alpha} c_{\beta}$.

- This is a "Higgs" transition leading to confinement because B carries electric Z_2 charge.
- The B-condensed (Higgs) state is a superconductor because the pairing of the f_{α} fermions in the Z_2 spin liquid now induces a pairing of the c_{α} fermions. This pairing can have $d_{x^2-y^2} + s$ symmetry.
- The c_{α} fermions have trivial space group transformations, and so the projective space group transformations of Bcan be deduced from those of the fermionic spinons f_{α} .
- In many cases, the projective transformations of B also imply density-wave order in the superconductor. This implies there can be a direct second-order transition from the FL* metal to a confining Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state.