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Charge carriers in the lightly-doped 
cuprates with Neel order
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N. P. Armitage et al., Phys. Rev. Lett. 88, 257001 (2002).

Photoemission in NCCO
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Néel order
Spin density wave theory

++
-

-
++

-

-
++

-

-
++

-

-

++
-

-
++

-

-
++

-

-
++

-

-



Nature 450, 533 (2007)



Outline

1.  Loss of Neel order in insulating square lattice
        antiferromagnets
          Distinct universality classes for half-integer, 
             odd integer, and even integer spin S

2.  Low energy theory for doped S=1/2 antiferromagnets
d-wave superconductivity

3.  Loss of Neel order in the d-wave superconductor
          Same universality classes as in general S insulators,
             leading to transitions to a valence bond supersolid,
             a nematic superconductor, or a vanilla
             superconductor
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H = J
∑

〈ij〉

!Si · !Sj ; !Si ⇒ spin operator with S = 1/2

Order parameter is a single vector field !ϕ = ηi
!Si

ηi = ±1 on two sublattices
〈!ϕ〉 #= 0 in Néel state.

!Si ⇒ spin operator

with !S2
i = S(S + 1).



Bond modulation weakens Neel order

H = J
∑

〈ij〉

!Si · !Sj ; !Si ⇒ spin operator with S = 1/2
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J/λ

!Si ⇒ spin operator

with !S2
i = S(S + 1).



Ground state is a product of pairs 
of entangled spins.

H = J
∑

〈ij〉

!Si · !Sj ; !Si ⇒ spin operator with S = 1/2

J

J/λ

!Si ⇒ spin operator

with !S2
i = S(S + 1).
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M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev.B 65, 014407 (2002).

Coupled dimer antiferromagnet

Landau-Ginzburg-Wilson theory for
O(3) order parameter !ϕ = (−1)i !Si

S =
∫

d2rdτ
[
(∂τ #ϕ)2 + c2(∇x#ϕ)2 + s#ϕ2 + u

(
#ϕ2

)2
]



Ground state has long-range Néel order 

Square lattice antiferromagnet

H =
∑

〈ij〉

Jij
!Si · !Sj

Order parameter is a single vector field !ϕ = ηi
!Si

ηi = ±1 on two sublattices
〈!ϕ〉 #= 0 in Néel state.



Destroy Neel order by perturbations which preserve full square 
lattice symmetry e.g. second-neighbor or ring exchange.

H =
∑

〈ij〉

Jij
!Si · !Sj

Square lattice antiferromagnet

What are possible states with 〈!ϕ〉 = 0 ?
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Theory for loss of Neel order

Write the spin operator in terms of
Schwinger bosons (spinons) ziα, α =↑, ↓:

"Si = z†iα"σαβziβ

where "σ are Pauli matrices, and the bosons obey the local con-
straint ∑

α

z†iαziα = 2S

Effective theory for spinons must be invariant under the U(1) gauge
transformation

ziα → eiθziα



Low energy spinon theory for “quantum disordering” the Néel state
is the CP1 model

Sz =
∫

d2xdτ

[
c2 |(∇x − iAx)zα|2 + |(∂τ − iAτ )zα|2 + s |zα|2

+ u
(
|zα|2

)2 +
1

4e2
(εµνλ∂νAλ)2

]

where Aµ is an emergent U(1) gauge field which describes low-lying
spin-singlet excitations.

Phases:

〈zα〉 %= 0 ⇒ Néel (Higgs) state
〈zα〉 = 0 ⇒ Spin liquid (Coulomb) state

Perturbation theory



Low energy spinon theory for “quantum disordering” the Néel state
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Perturbation theory

Distinct universality from O(3) model
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Non-perturbative effects
Have to account for Dirac monopoles in Aµ.
Evaulation of the boson number constraint

i

∫
dτ

∑

i

ηiAiτ

(
z†iαziα − 2S

)

for a Dirac monopole in Aµ yields the monopole Berry phase:

SB =
∫

dτ
∑

i

ζ2S
i Vi(τ) + c.c.

where Vi creates a monopole
on the dual lattice site i.

F. D. M. Haldane, Phys. Rev. Lett. 61, 1029 (1988).



N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

Half-odd-integer S

Continuum theory only has a quadrupled monopole term

S = . . . + λ4

∫
d2rdτV 4(r, τ).

λ4 is likely irrelevant at the critical point.
⇒ Critical theory is non-compact CP1 model

Loss of Neel order leads to a Valence Bond Solid (VBS) 

or



or

Odd integer S
Loss of Neel order leads to a (charge) nematic  

Nematic state can be viewed as a set of Haldane-gap spin chains.
Continuum theory only has a doubled monopole term

S = . . . + λ2

∫
d2rdτV 2(r, τ).

Fate of λ2 and resulting critical theory is unknown.

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).



Even integer S
Loss of Neel order leads to a state 

with no broken symmetry 

This is the Affleck-Kennedy-Leib-Tasaki (AKLT) spin gap state.
Continuum theory only has a single monopole term

S = . . . + λ1

∫
d2rdτV (r, τ).

Monopoles proliferate at the transition, and the critical theory is
the Landau-Ginzburg-Wilson O(3) model.

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
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Hole dynamics in an antiferromagnet across a deconfined 
quantum critical point, 
R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, 
Physical Review B 75 , 235122 (2007).

Algebraic charge liquids and the underdoped cuprates, 
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Nature Physics 4, 28 (2008).
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• Begin with the representation of the quantum antiferromagnet
as the lattice CP1 model:

Sz = −1
g

∑

a,µ

z∗aαeiAaµza+µ,α + i
∑

a

ηaAaτ



• Begin with the representation of the quantum antiferromagnet
as the lattice CP1 model:

Sz = −1
g

∑

a,µ

z∗aαeiAaµza+µ,α + i
∑

a

ηaAaτ

• Write the electron operator at site r, cα(r) in terms of doublon
operators g± and holon operators f±

cα(r) =

{
(g+(r) + f†+(r))zrα for r on sublattice A

εαβ(g− + f†−(r))(r)z∗rβ for r on sublattice B

Note that the fermions gs, fs have charge s under the U(1) gauge
field Aµ.
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• Complete theory for doped antiferromagnet:

S = Sz + Sf + St

• Choose the fermion dispersions to match the positions on elec-
tron/hole pockets

Sf =
∫

dτ
∑

s=±

∫

♦

d2k

4π2

[
g†s(#k)

(
∂τ − isAτ + ε(#k − s #A)

)
gs(#k) + (g → f)

]
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• Include the hopping between opposite sublattices (Shraiman-
Siggia term):

St = −t

∫
dτ

∑

〈rr′〉

c†α(r)cα(r′) + h.c.



Conventional phases

AF Metal
〈zα〉 #= 0 , Fermi surfaces of f± and/or g±

“Meissner” effect ties U(1) gauge charge to conserved spin along
the direction of Néel order



Conventional phases

AF d-wave superconductor
〈zα〉 #= 0

〈g+g−〉 #= 0 , s − wave pairing
〈f+f−〉 #= 0 , p − wave pairing

4 Dirac points 
(+ 4 shadows)++

-
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gapped++
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Loss of Neel order in 
AFM d-wave superconductor

Fermions fully 
gapped++

-

-

〈zα〉 #= 0 ⇒ 〈zα〉 = 0 , Higgs to Coulomb transition
〈g+g−〉 #= 0 , s− wave pairing
〈f+f−〉 #= 0 , p− wave pairing



Perturbation theory
Because fermions are gapped, low energy theory for spinons is the
same as that in the insulator: the CP1 model:

Sz =
∫

d2xdτ

[
c2 |(∇x − iAx)zα|2 + |(∂τ − iAτ )zα|2 + s |zα|2

+ u
(
|zα|2

)2 +
1

4e2
(εµνλ∂νAλ)2

]

Phases:

〈zα〉 %= 0 ⇒ AFM+dSC (Higgs) state
〈zα〉 = 0 ⇒ dSC (Coulomb) state
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Recall non-perturbative effects in insulator
Have to account for Dirac monopoles in Aµ.
Evaulation of the boson number constraint

i

∫
dτ

∑

i

ηiAiτ

(
z†iαziα − 2S

)

for a Dirac monopole in Aµ yields the monopole Berry phase:

SB =
∫

dτ
∑

i

ζ2S
i Vi(τ) + c.c.

where Vi(τ) creates a monopole
on the dual lattice site i.

F. D. M. Haldane, Phys. Rev. Lett. 61, 1029 (1988).



Non-perturbative effects in superconductor
Have to account for Dirac monopoles in Aµ.
Now the boson number constraint is

i

∫
dτ

∑

i

ηiAiτ

(
z†iαziα + g†i gi + f†i fi − 1

)
.

In the dual formulation, this modifies the Berry phase to:

SB =
∫

dτ
∑

i

ζiVi

∑

#,m

Ci
#mΦ†

#iΦmi + c.c.

where Φ# annihilates a vortex in the superconducting order with
flux h/(2e). These vortices come in multiple flavors, $, determined
by the density of fermions. The Ci

#m are oscillatory numerical co-
efficients which can be determined from space-group symmetry con-
siderations.

These results can be justified by an explicit duality transforma-
tion on a toy model in which the g± are treated as bosons.
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Non-perturbative effects in superconductor
Key question: What are the allowed values of 〈Φ†

!Φm〉, the vortex-
anti-vortex condensate, which preserve square lattice symmetry
(upto spin rotations) in the AFM+dSC phase ?

Answer: In addition to the obvious 〈Φ†
!Φm〉 ∼ δ!m, there are

a finite number of other choices, which we can enumerate. These
choices lead to distinct AFM+dSC states, which are indistinguish-
able in their symmetry properties, but have distinct low-energy
vortex fluctuations (“topological order”).
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Key question: What are the allowed values of 〈Φ†

!Φm〉, the vortex-
anti-vortex condensate, which preserve square lattice symmetry
(upto spin rotations) in the AFM+dSC phase ?

Answer: In addition to the obvious 〈Φ†
!Φm〉 ∼ δ!m, there are

a finite number of other choices, which we can enumerate. These
choices lead to distinct AFM+dSC states, which are indistinguish-
able in their symmetry properties, but have distinct low-energy
vortex fluctuations (“topological order”).

In the continuum limit, after integrating over Φ!, these choices lead
to 3 possibilities for effective monopole term:

∫
d2rdτV 4(r, τ),

or
∫

d2rdτV 2(r, τ),

or
∫

d2rdτV (r, τ)



AFM superconductor

〈g+g−〉 #= 0, 〈zα∗zβ〉 #= 0

Superconductor

〈g+g−〉 #= 0
Doubled
monopole

CP1O(3)
(SDW)

Valence bond supersolid

〈g+g−〉 #= 0

Nematic Superconductor

〈g+g−〉 #= 0

Non-perturbative effects in superconductor

Transitions match those found in insulators for different S



4 Dirac points 
(+ 4 shadows)++
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Loss of Neel order in AFM d-wave 
superconductor with gapless fermions

++

-

-

〈zα〉 #= 0 ⇒ 〈zα〉 = 0 , Higgs to Coulomb transition
〈g+g−〉 #= 0 , s− wave pairing
〈f+f−〉 #= 0 , p− wave pairing



Perturbation theory
Have to include Dirac fermions, and so the low energy theory for
spinons is not the CP1 model on the insulator:

Sz =
∫

d2xdτ

[
c2 |(∇x − iAx)zα|2 + |(∂τ − iAτ )zα|2 + s |zα|2

+ u
(
|zα|2

)2 + iψaγµ(∂µ − iAµ)ψa +
1

4e2
(εµνλ∂νAλ)2

]

Phases:

〈zα〉 %= 0 ⇒ AFM+dSC (Higgs)
〈zα〉 = 0 ⇒ Holon superconductor (Algebraic charge liquid)

R. K. Kaul, Y. B. Kim, S. Sachdev, and T. Senthil, Nature Physics 4, 28 (2008)



Non-perturbative effects in superconductor

Have to account for Dirac monopoles in Aµ.

Monopole Berry phases are modified by fermion zero modes . . . . . . ?



• Theory for the loss of Neel order in d-wave 
superconductors

• For superconductors with gapped Bogoliubov 
quasiparticles, we found 3 distinct transitions, to a 
valence bond supersolid, a nematic superconductor, 
and a vanilla superconductor

• These transitions in the compressible 
superconductor of S=1/2 electrons match the 
classification of transitions in the incompressible 
Mott insulator of general S spins.

Conclusions


