Quantum phase transitions and the Luttinger theorem.

Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

Phys. Rev. Lett. **90**, 216403 (2003), *Science* **303**, 1490 (2004), cond-mat/0409033, and to appear

Outline

A. Bose-Fermi mixtures Depleting the Bose-Einstein condensate in trapped ultracold atoms

B. The Kondo Lattice The heavy Fermi liquid (FL) and the fractionalized Fermi liquid (FL*)

C. Detour: Deconfined criticality in insulators Landau forbidden quantum transitions

D. Deconfined criticality in the Kondo lattice ?

A. Bose-Fermi mixtures

Depleting the Bose-Einstein condensate in trapped ultracold atoms Mixture of bosons b and fermions f

(*e.g.* ⁷Li+⁶Li, ²³Na+⁶Li, ⁸⁷Rb+⁴⁰K)

Tune to the vicinity of a Feshbach resonance associated with a molecular state ψ

Conservation laws:

$$b^{\dagger}b + \psi^{\dagger}\psi = N_{b}$$
$$f^{\dagger}f + \psi^{\dagger}\psi = N_{f}$$
$$f^{\dagger}f - b^{\dagger}b = N_{f} - N_{b}$$

2 FS, no BEC phase

2 Luttinger theorems; volume within both Fermi surfaces is conserved

Fermion number N_f/N_b

<u>2 FS + BEC phase</u>

1 Luttinger theorem; only total volume within Fermi surfaces is conserved

Fermion number N_f/N_b

Fermi wavevectors

Fermion number N_f/N_b

<u>1 FS + BEC phase</u>

1 Luttinger theorem; only total volume within Fermi surfaces is conserved

B. The Kondo Lattice

The heavy Fermi liquid (FL) and the fractionalized Fermi liquid (FL*)

The Kondo lattice

Local moments f_{σ}

Conduction electrons c_{σ}

$$H_{K} = \sum_{i < j} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + J_{K} \sum_{i} c_{i\sigma}^{\dagger} \vec{\tau}_{\sigma\sigma'} c_{i\sigma} \cdot \vec{S}_{fi} + J \sum_{\langle ij \rangle} \vec{S}_{fi} \cdot \vec{S}_{fj}$$

Number of *f* electrons per unit cell = $n_f = 1$ Number of *c* electrons per unit cell = n_c

Define a bosonic field which measures the hybridization between the two bands:

$$b_i \sim \sum_{\sigma} c_{i\sigma}^{\dagger} f_{i\sigma}$$

Analogy with Bose-Fermi mixture problem: $c_{i\sigma}$ is the analog of the "molecule" ψ

Conservation laws:

$$f_{\sigma}^{\dagger} f_{\sigma} + c_{\sigma}^{\dagger} c_{\sigma} = 1 + n_c \quad \text{(Global)}$$
$$f_{\sigma}^{\dagger} f_{\sigma} + b^{\dagger} b = 1 \qquad \text{(Local)}$$

Main difference: second conservation law is *local* so there is a U(1) gauge field.

$1 \text{ FS} + \text{BEC} \Leftrightarrow \text{Heavy Fermi liquid (FL)} \Leftrightarrow \text{Higgs phase}$

If the f band is dispersionless in the decoupled case, the ground state is always in the 1 FS FL phase.

$2 \text{ FS} + \text{BEC} \Leftrightarrow \text{Heavy Fermi liquid (FL)} \Leftrightarrow \text{Higgs phase}$

A bare f dispersion (from the RKKY couplings) allows a 2 FS FL phase.

2 FS, no BEC \Leftrightarrow Fractionalized Fermi liquid (FL*) \Leftrightarrow Deconfined phase

The *f* band "Fermi surface" realizes a spin liquid (because of the local constraint)

Another perspective on the FL* phase

Conduction electrons c_{σ}

Local moments f_{σ}

$$H = \sum_{i < j} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + \sum_{i} \left(J_{K} c_{i\sigma}^{\dagger} \vec{\tau}_{\sigma\sigma'} c_{i\sigma} \cdot \vec{S}_{fi} \right) + \sum_{i < j} J_{H} \left(i, j \right) \vec{S}_{fi} \cdot \vec{S}_{fj}$$

Determine the ground state of the quantum antiferromagnet defined by J_H , and then couple to conduction electrons by J_K

Choose J_H so that ground state of antiferromagnet is a Z_2 or U(1) spin liquid

Influence of conduction electrons

Conduction electrons c_{σ}

Local moments f_{σ}

At $J_K = 0$ the conduction electrons form a Fermi surface on their own with volume determined by n_c .

Perturbation theory in J_K is regular, and so this state will be stable for finite J_K .

So volume of Fermi surface is determined by

 $(n_c+n_f-1)=n_c \pmod{2}$, and does not equal the Luttinger value.

The (U(1) or Z_2) FL* state

A new phase: FL*

This phase preserves spin rotation invariance, and has a Fermi surface of *sharp* electron-like quasiparticles.

The state has "*topological order*" and associated neutral excitations. The topological order can be detected by the violation of Luttinger's Fermi surface volume. It can only appear in dimensions d > 1

 $2 \times \frac{v_0}{(2\pi)^d}$ (Volume enclosed by Fermi surface) $= n_c \pmod{2}$

Precursors: N. Andrei and P. Coleman, *Phys. Rev. Lett.* 62, 595 (1989).
Yu. Kagan, K. A. Kikoin, and N. V. Prokof'ev, *Physica* B 182, 201 (1992).
Q. Si, S. Rabello, K. Ingersent, and L. Smith, *Nature* 413, 804 (2001).
S. Burdin, D. R. Grempel, and A. Georges, *Phys. Rev.* B 66, 045111 (2002).
L. Balents and M. P. A. Fisher and C. Nayak, *Phys. Rev.* B 60, 1654, (1999);
T. Senthil and M.P.A. Fisher, *Phys. Rev.* B 62, 7850 (2000).
F. H. L. Essler and A. M. Tsvelik, *Phys. Rev.* B 65, 115117 (2002).

C. Detour: Deconfined criticality in insulating antiferromagnets

Landau forbidden quantum transitions

Phase diagram of S=1/2 square lattice antiferromagnet

Attempted theory for the destruction of Néel order

Express Néel order $\vec{\varphi}$ in terms of S = 1/2 bosonic spinons z_{α} by

 $\vec{\varphi} \sim z_{\alpha}^* \vec{\sigma}_{\alpha\beta} z_{\beta}.$

This introduces a U(1) gauge invariance under $z_{\alpha} \to z_{\alpha} e^{i\phi(x,\tau)}$. Field theory for the z_{α} spinons:

$$\mathcal{S}_{\text{critical}} = \int d^2 x d\tau \left[\left| (\partial_{\mu} - iA_{\mu}) z_{\alpha} \right|^2 + s \left| z_{\alpha} \right|^2 + \frac{u}{2} \left(\left| z_{\alpha} \right|^2 \right)^2 + \frac{1}{4e^2} \left(\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \right)^2 \right]$$

where A_{μ} is a U(1) gauge field.

Phases of theory

 $s < s_c \Rightarrow$ Néel (Higgs) phase with $\langle z_{\alpha} \rangle \neq 0$

 $s > s_c \Rightarrow$ Deconfined U(1) spin liquid with $\langle z_{\alpha} \rangle = 0$

N. Read and S. Sachdev, *Phys. Rev. Lett.* **62**, 1694 (1989).

A. V. Chubukov, S. Sachdev, and J. Ye, *Phys. Rev. B* 49, 11919 (1994).

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, *Science* **303**, 1490 (2004).

F. Deconfined criticality in the Kondo lattice ?

U(1) FL* phase generates magnetism at energies much lower than the critical energy of the FL to FL* transition