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Fermions with repulsive interactions

Characteristics of this ‘trivial’ quantum critical point:

• Zero density critical point allows an elegant connection between 
few body and many body physics.

• No “order parameter”. “Topological” characterization in the 
existence of the Fermi surface in one state.

• No transition at T > 0.

• Characteristic crossovers at T > 0, between quantum criticality, 
and low T regimes.



Fermions with repulsive interactions

Characteristics of this ‘trivial’ quantum critical point:

T

μ

Quantum critical:
Particle spacing ~ 
de Broglie 
wavelength

Classical 
Boltzmann gas

Fermi liquid



Fermions with repulsive interactions

Characteristics of this ‘trivial’ quantum critical point:
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• d > 2 – interactions are irrelevant. Critical theory is 
the spinful free Fermi gas.

• d < 2 – universal fixed point interactions. In d=1
critical theory is the spinless free Fermi gas (Tonks gas).
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Bosons with repulsive interactions
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• Critical theory in d =1 is also the spinless free Fermi gas 
(Tonks gas).

• The dilute Bose gas in d >2 is controlled by the zero-coupling 
fixed point. Interactions are “dangerously irrelevant” and the 
density above onset depends upon bare interaction strength 

(Yang-Lee theory).
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Fermions with attractive interactions
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• Universal fixed-point is accessed by fine-tuning to a Feshbach
resonance.

• Density onset transition is described by free fermions for weak-
coupling, and by (nearly) free bosons for strong coupling. The 
quantum-critical point between these behaviors is the Feshbach
resonance.

Weak-coupling 
BCS theory

BEC of paired 
bound state

P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).
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Fermions with attractive interactions
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P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).
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Fermions with attractive interactions
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Fermions with attractive interactions

detuning

Free fermions

P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).
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Fermions with attractive interactions

detuning

P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).
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Universal theory of gapless bosons 
and fermions, with decay of boson 
into 2 fermions relevant for d < 4
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Fermions with attractive interactions

detuning

P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).
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Quantum critical point at μ=0, ν=0, forms the basis of the theory 
of the BEC-BCS crossover, including the transitions to FFLO and 
normal states with unbalanced densities
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D. E. Sheehy and L. Radzihovsky, Phys. Rev. Lett. 95, 130401 (2005) 

Fermions with attractive interactions

Universal phase diagram



Fermions with attractive interactions

Universal phase diagram

P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).

h – Zeeman field 



D. E. Sheehy and L. Radzihovsky, Phys. Rev. Lett. 95, 130401 (2005) 
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Fermions with attractive interactions

Universal phase diagram
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Quantum Monte Carlo
J. Carlon, S.-Y. Chang, V.R. Pandharipande, and 
K.E. Schmidt, Phys. Rev. Lett. 91, 050401 (2003).

Fermions with attractive interactions
Ground state properties at unitarity and balanced density

Expansion in 1/N with Sp(2N) symmetry
M. Y. Veillette, D. E. Sheehy, and L. Radzihovsky
Phys. Rev. A 75, 043614 (2007)



Expansion in 1/N
with Sp(2N) 
symmetry
M. Y. Veillette,                 
D. E. Sheehy, and               
L. Radzihovsky
Phys. Rev. A 75, 043614 
(2007)

Fermions with attractive interactions
Ground state properties near unitarity and balanced density

Quantum Monte 
Carlo
J. Carlon, S.-Y. Chang, 
V.R. Pandharipande, and 
K.E. Schmidt, Phys. Rev. 
Lett. 91, 050401 (2003).
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Fermions with attractive interactions
Finite temperature properties at unitarity and balanced density

Expansion in 1/N with Sp(2N) symmetry
M. Y. Veillette, D. E. Sheehy, and L. Radzihovsky
Phys. Rev. A 75, 043614 (2007)
P. Nikolic and S. Sachdev, 
Phys. Rev. A 75, 033608 (2007).



V. Gurarie, L. Radzihovsky, and A.V. Andreev, Phys. Rev. Lett. 94, 230403 (2005) 
C.-H. Cheng and S.-K. Yip, Phys. Rev. Lett. 95, 070404 (2005)

Fermions with attractive interactions in p-wave channel
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M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).
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Velocity distribution of  87Rb atoms

Superfliud



M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Velocity distribution of  87Rb atoms

Insulator
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• 1st order coherence          disappears 
in the Mott-insulating state.
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• Noise correlation function oscillates 
at reciprocal lattice vectors; bunching 
effect of bosons.

Noise correlation (time of flight) in Mott-insulators

Folling et al., Nature 434, 481 (2005); Altman et al., 
PRA 70, 13603 (2004).
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Two dimensional superfluid-Mott insulator transition

I. B. Spielman et al., cond-mat/0606216.
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Fermionic atoms in optical lattices
• Observation of Fermi surface.

Low density: metal high density: band insulator
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Esslinger et al., 
PRL 94:80403 
(2005)

Fermions with near-unitary interactions in the 
presence of a periodic potential



Fermions with near-unitary interactions in the presence 
of a periodic potential
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Universal phase diagram of fermions with near-unitary 
interactions in the presence of a periodic potential

E.G. Moon, P. Nikolic, and S. Sachdev, to appear

Expansion in 1/N
with Sp(2N) 
symmetry



E.G. Moon, P. Nikolic, and S. Sachdev, to appear

Boundaries to 
insulating phases for 
different values of νaL
where ν is the detuning 
from the resonance

Universal phase diagram of fermions with near-unitary 
interactions in the presence of a periodic potential



E.G. Moon, P. Nikolic, and S. Sachdev, to appear

Boundaries to 
insulating phases for 
different values of νaL
where ν is the detuning 
from the resonance

Insulators have 
multiple band-

occupancy, and are 
intermediate between 

band insulators of 
fermions and Mott 

insulators of bosonic
fermion pairs

Universal phase diagram of fermions with near-unitary 
interactions in the presence of a periodic potential



Artificial graphene in optical lattices
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• Band Hamiltonian (σ-bonding) for spin-
polarized fermions.
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Flat bands in the entire Brillouin zone

• Flat band + Dirac cone. • localized eigenstates.

Many correlated phases possible
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M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).



Superfluid Insulator

Non-zero temperature phase diagram

Depth of periodic potential



Superfluid Insulator

Non-zero temperature phase diagram

Depth of periodic potential

Dynamics of the classical 
Gross-Pitaevski equation



Superfluid Insulator

Non-zero temperature phase diagram

Depth of periodic potential

Dilute Boltzmann gas of 
particle and holes



Superfluid Insulator

Non-zero temperature phase diagram

Depth of periodic potential

No wave or quasiparticle
description 



D. B. Haviland, Y. Liu, and A. M. Goldman, 
Phys. Rev. Lett. 62, 2180 (1989) 

Resistivity of Bi films
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M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)
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Non-zero temperature phase diagram

Depth of periodic potential



Superfluid Insulator

Non-zero temperature phase diagram

Depth of periodic potential

Collisionless-to 
hydrodynamic 
crossover of a 
conformal field 
theory (CFT)

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).



Superfluid Insulator

Non-zero temperature phase diagram

Depth of periodic potential

Collisionless-to 
hydrodynamic 
crossover of a 
conformal field 
theory (CFT)

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

Needed: Cold atom experiments in this regime



Hydrodynamics of a conformal field theory (CFT)

Maldacena’s AdS/CFT correspondence relates the 
hydrodynamics of CFTs to the quantum gravity theory 
of the horizon of a black hole in Anti-de Sitter space.



Maldacena’s AdS/CFT correspondence relates the 
hydrodynamics of CFTs to the quantum gravity theory 
of the horizon of a black hole in Anti-de Sitter space.

Holographic 
representation of black 
hole physics in a 2+1 
dimensional CFT at a 
temperature equal to the 
Hawking temperature of 
the black hole.

Black hole

3+1 dimensional 
AdS space

Hydrodynamics of a conformal field theory (CFT)



Hydrodynamics of a conformal field theory (CFT)

Hydrodynamics 
of a CFT

Waves of gauge 
fields in a curved 

background



Hydrodynamics of a conformal field theory (CFT)

The scattering cross-section of the thermal 
excitations is universal and so transport co-
efficients are universally determined by kBT
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K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).



Hydrodynamics of a conformal field theory (CFT)

P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, hep-th/0701036
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Spin conductivity

For the (unique) CFT with a SU(N) gauge field and 
16 supercharges, we know the exact diffusion 

constant associated with a global SO(8) symmetry:
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H.P. Büchler, M. Hermele, S.D. Huber, M.P.A. Fisher, and P. Zoller, 
Phys. Rev. Lett. 95, 040402 (2005)

Ring-exchange interactions in an optical lattice 
using a Raman transition





Antiferromagnetic (Neel) order in the 
insulator 

  ;    spin operator with =1/2i j i
ij

H J S S S S= ⇒∑
G G G
i



Induce formation of valence bonds by 
e.g. ring-exchange interactions 

 +  4-spin exchangei j
ij

H J S S K= ∑ ∑
,

G G
i

A. W. Sandvik, cond-mat/0611343
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Entangled liquid of valence bonds 
(Resonating valence bonds – RVB)

P. Fazekas and P.W. Anderson, Phil Mag 30, 23 (1974). 
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N. Read and S. Sachdev, 
Phys. Rev. Lett. 62, 1694 
(1989).                              
R. Moessner and S. L. 
Sondhi, Phys. Rev. B 63, 
224401 (2001).  

Valence bond solid (VBS)
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R. Moessner and S. L. 
Sondhi, Phys. Rev. B 63, 
224401 (2001).  

Valence bond solid (VBS)
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Excitations of the RVB liquid

Electron fractionalization:               
Excitations carry spin S=1/2 but no charge
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Excitations of the VBS

Free spins are unable to move apart:           
no fractionalization, but confinement



Phase diagram of square lattice antiferromagnet

 +  4-spin exchangei j
ij

H J S S K= ∑ ∑
,

G G
i

A. W. Sandvik, cond-mat/0611343
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Phase diagram of square lattice antiferromagnet

VBS orderVBS order

K/J

Neel orderNeel order

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher,  Science 303, 1490 (2004).
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Phase diagram of square lattice antiferromagnet

VBS orderVBS order

K/J

Neel orderNeel order

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher,  Science 303, 1490 (2004).

RVB physics appears at the quantum 
critical point which has fractionalized 
excitations: “deconfined criticality”



Temperature, T

0

Quantum criticality of 
fractionalized 

excitations

K/J



Phases of nuclear matter



• Rapid progress in the understanding of quantum 
liquids near unitarity

• Rich possibilities of exotic quantum phases in optical 
lattices

• Cold atom studies of the entanglement of large 
numbers of qubits: insights may be important for 
quantum cryptography and quantum computing. 

• Tabletop “laboratories for the entire universe”: 
quantum mechanics of black holes, quark-gluon 
plasma, neutrons stars, and big-bang physics.

Conclusions




	Noise correlation (time of flight) in Mott-insulators
	Two dimensional superfluid-Mott insulator transition
	Fermionic atoms in optical lattices
	 Artificial graphene in optical lattices
	Flat bands in the entire Brillouin zone

