Quantum phase transitions: from antiferromagnets and superconductors to black holes

Reviews: arXiv:0907.0008 arXiv:0810.3005 (with Markus Mueller)

Talk online: sachdev.physics.harvard.edu

Lars Fritz, Harvard Victor Galitski, Maryland Max Metlitski, Harvard Eun Gook Moon, Harvard Markus Mueller, Trieste Joerg Schmalian, Iowa

Frederik Denef, Harvard+Leuven Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Dam Son, Washington

<u>Outline</u>

I. Coupled dimer antiferromagnets Order parameters and Landau-Ginzburg criticality

2. Graphene `Topological' Fermi surface transitions

3. Quantum criticality and black holes AdS₄ theory of compressible quantum liquids

4. Quantum criticality in the cuprates Global phase diagram and the spin density wave transition in metals

<u>Outline</u>

I. Coupled dimer antiferromagnets Order parameters and Landau-Ginzburg criticality

2. Graphene `Topological' Fermi surface transitions

3. Quantum criticality and black holes *AdS*₄ *theory of compressible quantum liquids*

4. Quantum criticality in the cuprates Global phase diagram and the spin density wave transition in metals

Square lattice antiferromagnet

Ground state has long-range Néel order

Order parameter is a single vector field $\vec{\varphi} = \eta_i \vec{S}_i$ $\eta_i = \pm 1$ on two sublattices $\langle \vec{\varphi} \rangle \neq 0$ in Néel state.

Weaken some bonds to induce spin entanglement in a new quantum phase

<u>Square lattice antiferromagnet</u>

Ground state is a "quantum paramagnet" with spins locked in valence bond singlets

$$=\frac{1}{\sqrt{2}}\left(\left|\uparrow\downarrow\right\rangle-\left|\downarrow\uparrow\right\rangle\right)$$

TICuCl₃ at ambient pressure

FIG. 1. Measured neutron profiles in the a^*c^* plane of TlCuCl₃ for i = (1.35,0,0), ii = (0,0,3.15) [r.l.u]. The spectrum at T = 1.5 K

N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, *Phys. Rev.* B 63 172414 (2001).

TICuCl₃ at ambient pressure

N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, *Phys. Rev.* B 63 172414 (2001).

Description using Landau-Ginzburg field theory

Tuesday, November 3, 2009

TICuCl₃ with varying pressure

Observation of $3 \rightarrow 2$ low energy modes, emergence of new Higgs-Englert-Brout particle in the Néel phase, and vanishing of Néel temperature at the quantum critical point

> Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, *Phys. Rev. Lett.* **100**, 205701 (2008)

Tuesday, November 3, 2009

Prediction of quantum field theory

Potential for $\vec{\varphi}$ fluctuations: $V(\vec{\varphi}) = (\lambda - \lambda_c)\vec{\varphi}^2 + u(\vec{\varphi}^2)^2$ <u>Paramagnetic phase</u>, $\lambda > \lambda_c$

Expand about $\vec{\varphi} = 0$:

$$V(\vec{\varphi}) \approx (\lambda - \lambda_c)\vec{\varphi}^2$$

Yields 3 particles with energy gap $\sim \sqrt{(\lambda - \lambda_c)}$

Prediction of quantum field theory

Potential for $\vec{\varphi}$ fluctuations: $V(\vec{\varphi}) = (\lambda - \lambda_c)\vec{\varphi}^2 + u(\vec{\varphi}^2)^2$ <u>Paramagnetic phase</u>, $\lambda > \lambda_c$

Expand about $\vec{\varphi} = 0$:

$$V(\vec{\varphi}) \approx (\lambda - \lambda_c) \vec{\varphi}^2$$

Yields 3 particles with energy gap $\sim \sqrt{(\lambda - \lambda_c)}$

Néel phase, $\lambda <\!\!\lambda_c$

Expand $\vec{\varphi} = (0, 0, \sqrt{(\lambda_c - \lambda)/(2u)}) + \vec{\varphi}_1$: $V(\vec{\varphi}) \approx 2(\lambda_c - \lambda)\varphi_{1z}^2$

Yields 2 gapless spin waves and one Higgs-Englert-Brout particle with energy gap $\sim \sqrt{2(\lambda_c - \lambda)}$

Tuesday, November 3, 2009
Prediction of quantum field theory

Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, *Phys. Rev. Lett.* **100**, 205701 (2008)

<u>Outline</u>

I. Coupled dimer antiferromagnets Order parameters and Landau-Ginzburg criticality

2. Graphene `Topological' Fermi surface transitions

3. Quantum criticality and black holes AdS₄ theory of compressible quantum liquids

4. Quantum criticality in the cuprates Global phase diagram and the spin density wave transition in metals

<u>Outline</u>

I. Coupled dimer antiferromagnets Order parameters and Landau-Ginzburg criticality

2. Graphene *`Topological' Fermi surface transitions*

3. Quantum criticality and black holes AdS₄ theory of compressible quantum liquids

4. Quantum criticality in the cuprates Global phase diagram and the spin density wave transition in metals

Graphene

Graphene

Quantum phase transition in graphene tuned by a gate voltage

Electron Fermi surface

Quantum phase transition in graphene tuned by a gate voltage

Hole Fermi surface

Electron Fermi surface Quantum phase transition in graphene tuned by a gate voltage

Hole Fermi surface

Electron Fermi surface

Quantum critical graphene

Low energy theory has 4 two-component Dirac fermions, ψ_{σ} , $\sigma = 1 \dots 4$, interacting with a 1/r Coulomb interaction

$$S = \int d^2 r d\tau \psi_{\sigma}^{\dagger} \left(\partial_{\tau} - i v_F \vec{\sigma} \cdot \vec{\nabla} \right) \psi_{\sigma} + \frac{e^2}{2} \int d^2 r d^2 r' d\tau \psi_{\sigma}^{\dagger} \psi_{\sigma}(r) \frac{1}{|r - r'|} \psi_{\sigma'}^{\dagger} \psi_{\sigma'}(r')$$

Quantum critical graphene

Low energy theory has 4 two-component Dirac fermions, ψ_{σ} , $\sigma = 1 \dots 4$, interacting with a 1/r Coulomb interaction

$$S = \int d^2 r d\tau \psi_{\sigma}^{\dagger} \left(\partial_{\tau} - i v_F \vec{\sigma} \cdot \vec{\nabla} \right) \psi_{\sigma} + \frac{e^2}{2} \int d^2 r d^2 r' d\tau \psi_{\sigma}^{\dagger} \psi_{\sigma}(r) \frac{1}{|r - r'|} \psi_{\sigma'}^{\dagger} \psi_{\sigma'}(r')$$

Dimensionless "fine-structure" constant $\alpha = e^2/(\hbar v_F)$. RG flow of α :

$$\frac{d\alpha}{d\ell} = -\alpha^2 + \dots$$

Behavior is similar to a conformal field theory (CFT) in 2+1 dimensions with $\alpha \sim 1/\ln(\text{scale})$

Quantum phase transition in graphene

Quantum critical transport

Quantum "perfect fluid" with shortest possible relaxation time, τ_R

S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

Quantum critical transport

Transport co-oefficients not determined by collision rate, but by universal constants of nature

Electrical conductivity

$$\sigma = \frac{e^2}{h} \times [\text{Universal constant } \mathcal{O}(1)]$$

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

Quantum critical transport

Transport co-oefficients not determined by collision rate, but by universal constants of nature

Quantum critical transport in graphene

$$\sigma(\omega) = \begin{cases} \frac{e^2}{h} \left[\frac{\pi}{2} + \mathcal{O}\left(\frac{1}{\ln(\Lambda/\omega)}\right) \right] &, \quad \hbar \omega \gg k_B T \\ \frac{e^2}{h\alpha^2(T)} \left[0.760 + \mathcal{O}\left(\frac{1}{|\ln(\alpha(T))|}\right) \right] &, \quad \hbar \omega \ll k_B T \alpha^2(T) \end{cases}$$

$$\frac{\eta}{s} = \frac{\hbar}{k_B \alpha^2(T)} \times 0.130$$

where the "fine structure constant" is

$$\alpha(T) = \frac{\alpha}{1 + (\alpha/4)\ln(\Lambda/T)} \overset{T \to 0}{\sim} \frac{4}{\ln(\Lambda/T)}$$

L. Fritz, J. Schmalian, M. Müller and S. Sachdev, *Physical Review B* **78**, 085416 (2008) M. Müller, J. Schmalian, and L. Fritz, *Physical Review Letters* **103**, 025301 (2009)

<u>Outline</u>

I. Coupled dimer antiferromagnets Order parameters and Landau-Ginzburg criticality

2. Graphene `Topological' Fermi surface transitions

3. Quantum criticality and black holes AdS₄ theory of compressible quantum liquids

4. Quantum criticality in the cuprates Global phase diagram and the spin density wave transition in metals

<u>Outline</u>

I. Coupled dimer antiferromagnets Order parameters and Landau-Ginzburg criticality

2. Graphene

`Topological' Fermi surface transitions

3. Quantum criticality and black holes AdS₄ theory of compressible quantum liquids

4. Quantum criticality in the cuprates Global phase diagram and the spin density wave transition in metals AdS/CFT correspondence The quantum theory of a black hole in a 3+1dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions

<u>AdS/CFT correspondence</u> The quantum theory of a black hole in a 3+1dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions

AdS/CFT correspondence The quantum theory of a black hole in a 3+1dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions

3+1 dimensional AdS space

Black hole temperature

temperature of quantum criticality

Quantum criticality in 2+1 dimensions

Maldacena, Gubser, Klebanov, Polyakov, Witten

<u>AdS/CFT correspondence</u> The quantum theory of a black hole in a 3+1dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions

3+1 dimensional AdS space

Black hole entropy = entropy of quantum criticality

Quantum criticality in 2+1 dimensions AdS/CFT correspondence The quantum theory of a black hole in a 3+1dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions

3+1 dimensional AdS space

Quantum critical dynamics = waves in curved space

Quantum criticality in 2+1 dimensions

Maldacena, Gubser, Klebanov, Polyakov, Witten

AdS/CFT correspondence The quantum theory of a black hole in a 3+1dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions

3+1 dimensional AdS space

Friction of quantum criticality = waves falling into black hole

Quantum criticality in 2+1 dimensions

Kovtun, Policastro, Son

on AdS_4

Conformal field theory in 2+1 dimensions at T > 0, with a non-zero chemical potential, μ and applied magnetic field, B

> Einstein gravity on AdS₄ with a Reissner-Nordstrom black hole carrying electric and magnetic charges

Examine free energy and Green's function of a probe particle

T. Faulkner, H. Liu, J. McGreevy, and D.Vegh, arXiv:0907.2694 F. Denef, S. Hartnoll, and S. Sachdev, to appear

Short time behavior depends upon conformal AdS4 geometry near boundary

T. Faulkner, H. Liu, J. McGreevy, and D.Vegh, arXiv:0907.2694 F. Denef, S. Hartnoll, and S. Sachdev, to appear

Long time behavior depends upon near-horizon geometry of black hole

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 F. Denef, S. Hartnoll, and S. Sachdev, to appear

Radial direction of gravity theory is measure of energy scale in CFT

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 F. Denef, S. Hartnoll, and S. Sachdev, to appear

Infrared physics of Fermi surface is linked to the near horizon AdS₂ geometry of Reissner-Nordstrom black hole

T. Faulkner, H. Liu, J. McGreevy, and D.Vegh, arXiv:0907.2694

Geometric interpretation of RG flow

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694

Geometric interpretation of RG flow

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694

We used the AdS/CFT connection to derive many new relations between thermoelectric transport co-efficients in the quantum critical regime.

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

We used the AdS/CFT connection to derive many new relations between thermoelectric transport co-efficients in the quantum critical regime.

The **same** results were later obtained from the equations of generalized relativistic magnetohydrodynamics.

So the results apply to experiments on graphene, and to the dynamics of black holes.

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

We used the AdS/CFT connection to derive many new relations between thermoelectric transport co-efficients in the quantum critical regime.

As a simple example, in zero magnetic field, we can write the electrical conductivity as

$$\sigma = \sigma_Q + \frac{e^{*2}\rho^2 v^2}{\varepsilon + P} \pi \delta(\omega)$$

where σ_Q is the universal conductivity of the CFT, ρ is the charge density, ε is the energy density and P is the pressure.

The same quantities also determine the thermal conductivity, $\kappa:$

$$\kappa = \sigma_Q \left(\frac{k_B^2 T}{e^{*2}}\right) \left(\frac{\varepsilon + P}{k_B T \rho}\right)^2$$

We used the AdS/CFT connection to derive many new relations between thermoelectric transport co-efficients in the quantum critical regime.

A second example: In an applied magnetic field B, the dynamic transport co-efficients exhibit a hydrodynamic cyclotron resonance at a frequency ω_c

$$\omega_c = \frac{e^* B \rho v^2}{c(\varepsilon + P)}$$

and damping constant γ

$$\gamma = \sigma_Q \frac{B^2 v^2}{c^2 (\varepsilon + P)}.$$

The same constants determine the **quasinormal frequency** of the Reissner-Nordstrom black hole.

Green's function of a fermion

Green's function of a fermion

Similar to non-Fermi liquid theories of Fermi surfaces coupled to gauge fields, and at quantum critical points

Free energy from gravity theory

The free energy is expressed as a sum over the "quasinormal frequencies", z_{ℓ} , of the black hole. Here ℓ represents any set of quantum numbers:

$$\mathcal{F}_{\text{boson}} = -T \sum_{\ell} \ln \left(\frac{|z_{\ell}|}{2\pi T} \left| \Gamma \left(\frac{iz_{\ell}}{2\pi T} \right) \right|^2 \right)$$
$$\mathcal{F}_{\text{fermion}} = T \sum_{\ell} \ln \left(\left| \Gamma \left(\frac{iz_{\ell}}{2\pi T} + \frac{1}{2} \right) \right|^2 \right)$$

Application of this formula shows that the fermions exhibit the dHvA quantum oscillations with expected period $(2\pi/(\text{Fermi surface ares}))$ in 1/B, but with an amplitude corrected from the Fermi liquid formula of Lifshitz-Kosevich.

F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788

<u>Outline</u>

I. Coupled dimer antiferromagnets Order parameters and Landau-Ginzburg criticality

2. Graphene `Topological' Fermi surface transitions

3. Quantum criticality and black holes AdS₄ theory of compressible quantum liquids

4. Quantum criticality in the cuprates Global phase diagram and the spin density wave transition in metals

<u>Outline</u>

I. Coupled dimer antiferromagnets Order parameters and Landau-Ginzburg criticality

2. Graphene `Topological' Fermi surface transitions

3. Quantum criticality and black holes *AdS*₄ *theory of compressible quantum liquids*

4. Quantum criticality in the cuprates Global phase diagram and the spin density wave transition in metals

The cuprate superconductors

Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface

Antiferromagnetism

d-wave superconductivity

Crossovers in transport properties of hole-doped cuprates

N. E. Hussey, J. Phys: Condens. Matter 20, 123201 (2008)

Crossovers in transport properties of hole-doped cuprates

Antiferromagnetism

d-wave superconductivity

d-wave superconductivity

<u>Canonical quantum critical phase diagram</u> <u>of coupled-dimer antiferromagnet</u>

Christian Ruegg et al., Phys. Rev. Lett. 100, 205701 (2008)

Crossovers in transport properties of hole-doped cuprates

Crossovers in transport properties of hole-doped cuprates

Only candidate quantum critical point observed at low T

d-wave superconductivity

Fermi surface+antiferromagnetism

The electron spin polarization obeys

$$\left\langle \vec{S}(\mathbf{r},\tau) \right\rangle = \vec{\varphi}(\mathbf{r},\tau)e^{i\mathbf{K}\cdot\mathbf{r}}$$

where \mathbf{K} is the ordering wavevector.

S. Sachdev, A.V. Chubukov, and A. Sokol, *Phys. Rev. B* **51**, 14874 (1995). A.V. Chubukov and D. K. Morr, *Physics Reports* **288**, 355 (1997).

S. Sachdev, A.V. Chubukov, and A. Sokol, *Phys. Rev. B* **51**, 14874 (1995). A.V. Chubukov and D. K. Morr, *Physics Reports* **288**, 355 (1997).

S. Sachdev, A.V. Chubukov, and A. Sokol, *Phys. Rev. B* **51**, 14874 (1995). A.V. Chubukov and D. K. Morr, *Physics Reports* **288**, 355 (1997).

Fermi surface breaks up at hot spots into electron and hole "pockets"

S. Sachdev, A.V. Chubukov, and A. Sokol, *Phys. Rev. B* **51**, 14874 (1995). A.V. Chubukov and D. K. Morr, *Physics Reports* **288**, 355 (1997).

Fermi surface breaks up at hot spots into electron and hole "pockets"

S. Sachdev, A.V. Chubukov, and A. Sokol, *Phys. Rev. B* **51**, 14874 (1995). A.V. Chubukov and D. K. Morr, *Physics Reports* **288**, 355 (1997).

Theory of quantum criticality in the cuprates

Theory of quantum criticality in the cuprates

Theory of quantum criticality in the cuprates

Fluctuations about mean field theory SDW fluctuation $\vec{\varphi}$ M. Metlitski Fermions near connected hot spots

Turn $\vec{\varphi}$ lines into doubled particle-holes lines, and add dotted lines for fermion loops

Sung-Sik Lee, Phys. Rev. B 80, 165102 (2009); M. Metlitski and S. Sachdev, to appear

All planar graphs contain the dominant singularity, and have to be resummed for a consistent theory

Sung-Sik Lee, Phys. Rev. B 80, 165102 (2009); M. Metlitski and S. Sachdev, to appear

A string theory for the Fermi surface ?

Sung-Sik Lee, Phys. Rev. B 80, 165102 (2009); M. Metlitski and S. Sachdev, to appear

Conclusions

General theory of finite temperature dynamics and transport near quantum critical points, with applications to antiferromagnets, graphene, and superconductors

Conclusions

The AdS/CFT offers promise in providing a new understanding of strongly interacting quantum matter at non-zero density

Conclusions

Identified quantum criticality in cuprate superconductors with a critical point at optimal doping associated with onset of spin density wave order in a metal

Elusive optimal doping quantum critical point has been "hiding in plain sight".

It is shifted to lower doping by the onset of superconductivity