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 Non-zero T  (classical) phase transitions of 
superfluids, magnets with `easy-plane’ spins, 
…..in D spatial dimensions 

 T=0 (quantum) phase transitions of bosons 
at integer filling between superfluid and 
insulator in D-1 spatial dimensions 
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Figure 1: Schematic picture of ferro- and antiferromagnets. The chequerboard pat-

tern in the antiferromagnet is called a Néel state.

the role of symmetry in physics. Using new experimental techniques, hidden
patterns of symmetry were discovered. For example, there are magnetic mate-
rials where the moments form a chequerboard pattern where the neighbouring
moments are anti-parallel, see Fig. 1. In spite of not having any net magneti-
zation, such antiferromagnets are nevertheless ordered states, and the pattern
of microscopic spins can be revealed by neutron scattering. The antiferro-
magnetic order can again be understood in terms of the associated symmetry
breaking.

In a mathematical description of ferromagnetism, the important variable is
the magnetization, ~mi = µ ~Si, where µ is the magnetic moment and ~Si the spin
on site i. In an ordered phase, the average value of all the spins is different from
zero, h~mii 6= 0. The magnetization is an example of an order parameter, which
is a quantity that has a non-zero average in the ordered phase. In a crystal it
is natural to think of the sites as just the atomic positions, but more generally
one can define “block spins” which are averages of spins on many neighbouring
atoms. The “renormalization group” techniques used to understand the theory
of such aggregate spins are crucial for understanding phase transitions, and
resulted in a Nobel Prize for Ken Wilson in 1982.

It is instructive to consider a simple model, introduced by Heisenberg, that
describes both ferro- and antiferromagnets. The Hamiltonian is

HF = �J
X

hiji

~Si · ~Sj � µ
X

i

~B · ~Si (1)
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Wilson-Fisher theory
(Nobel Prize, 1982)

In dimension D = 3, in the low T phase, the symmetry ✓i !
✓i + c is “spontaneously broken”. There is (o↵-diagonal) long-

range order (LRO) characterized by ( i ⌘ ei✓i)

lim
|ri�rj |!1

⌦
 i 

⇤
j

↵
= | 0|2 6= 0 .

We break the symmetry by choosing an overall phase so that

h ii =  0 6= 0
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KT theory
(Nobel Prize, 2016)

Kosterlitz-Thouless theory in D=2

In spatial dimension D = 2, the symmetry ✓i ! ✓i + c is

preserved at all non-zero T . There is no LRO, and

h ii = 0 for all T > 0.

Nevertheless, there is a phase transition at T = TKT ,

where the nature of the correlations changes

lim
|ri�rj |!1

⌦
 i 

⇤
j

↵
⇠

8
<

:

|ri � rj |�↵, for T < TKT , (QLRO)

exp(�|ri � rj |/⇠), for T > TKT , (SRO)

.

The low T phase also has topological order associated

with the suppression of vortices.
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Figure 3: To the left a single vortex configuration, and to the right a vortex-

antivortex pair. The angle ✓ is shown as the direction of the arrows, and the cores of

the vortex and antivortex are shaded in red and blue respectively. Note how the arrows

rotate as you follow a contour around a vortex. (Figure by Thomas Kvorning.)

by the Hamiltonian,

HXY = �J
X

hiji

cos(✓i � ✓j) (3)

where hiji again denotes nearest neighbours and the angular variables, 0 
✓i < 2⇡ can denote either the direction of an XY-spin or the phase of a
superfluid. We shall discuss this model in some detail below.

Although the GL and BCS theories were very successful in describing many
aspects of superconductors, as were the theories developed by Lev Landau
(Nobel Prize 1962), Nikolay Bogoliubov, Richard Feynman, Lars Onsager and
others for the Bose superfluids, not everything fit neatly into the Landau
paradigm of order parameters and spontaneous symmetry breaking. Problems
occur in low-dimensional systems, such as thin films or thin wires. Here, the
thermal fluctuations become much more important and often prevent ordering
even at zero temperature [39]. The exact result of interest here is due to
Wegner, who showed that there cannot be any spontaneous symmetry breaking
in the XY-model at finite temperature [53].

So far we have discussed phenomena that can be understood using classical
concepts, at least as long as one accepts that superfluids are characterised
by a complex phase. There are however important macroscopic phenomena
that cannot be explained without using quantum mechanics. To find the
ground state of a quantum many-body problem is usually very difficult, but
there are some important examples where solutions to simplified problems give
deep physical insights. Electromagnetic response in crystalline materials is an

6

Vortices suppressed

Vortices proliferate

Kosterlitz-Thouless theory in D=2
In spatial dimension d = 2, the symmetry ✓i ! ✓i + c is

preserved at all non-zero T . There is no LRO, and

h ii = 0 for all T > 0.

Nevertheless, there is a phase transition at T = TKT ,
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the role of symmetry in physics. Using new experimental techniques, hidden
patterns of symmetry were discovered. For example, there are magnetic mate-
rials where the moments form a chequerboard pattern where the neighbouring
moments are anti-parallel, see Fig. 1. In spite of not having any net magneti-
zation, such antiferromagnets are nevertheless ordered states, and the pattern
of microscopic spins can be revealed by neutron scattering. The antiferro-
magnetic order can again be understood in terms of the associated symmetry
breaking.

In a mathematical description of ferromagnetism, the important variable is
the magnetization, ~mi = µ ~Si, where µ is the magnetic moment and ~Si the spin
on site i. In an ordered phase, the average value of all the spins is different from
zero, h~mii 6= 0. The magnetization is an example of an order parameter, which
is a quantity that has a non-zero average in the ordered phase. In a crystal it
is natural to think of the sites as just the atomic positions, but more generally
one can define “block spins” which are averages of spins on many neighbouring
atoms. The “renormalization group” techniques used to understand the theory
of such aggregate spins are crucial for understanding phase transitions, and
resulted in a Nobel Prize for Ken Wilson in 1982.

It is instructive to consider a simple model, introduced by Heisenberg, that
describes both ferro- and antiferromagnets. The Hamiltonian is

HF = �J
X

hiji

~Si · ~Sj � µ
X

i

~B · ~Si (1)
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the role of symmetry in physics. Using new experimental techniques, hidden
patterns of symmetry were discovered. For example, there are magnetic mate-
rials where the moments form a chequerboard pattern where the neighbouring
moments are anti-parallel, see Fig. 1. In spite of not having any net magneti-
zation, such antiferromagnets are nevertheless ordered states, and the pattern
of microscopic spins can be revealed by neutron scattering. The antiferro-
magnetic order can again be understood in terms of the associated symmetry
breaking.

In a mathematical description of ferromagnetism, the important variable is
the magnetization, ~mi = µ ~Si, where µ is the magnetic moment and ~Si the spin
on site i. In an ordered phase, the average value of all the spins is different from
zero, h~mii 6= 0. The magnetization is an example of an order parameter, which
is a quantity that has a non-zero average in the ordered phase. In a crystal it
is natural to think of the sites as just the atomic positions, but more generally
one can define “block spins” which are averages of spins on many neighbouring
atoms. The “renormalization group” techniques used to understand the theory
of such aggregate spins are crucial for understanding phase transitions, and
resulted in a Nobel Prize for Ken Wilson in 1982.

It is instructive to consider a simple model, introduced by Heisenberg, that
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the role of symmetry in physics. Using new experimental techniques, hidden
patterns of symmetry were discovered. For example, there are magnetic mate-
rials where the moments form a chequerboard pattern where the neighbouring
moments are anti-parallel, see Fig. 1. In spite of not having any net magneti-
zation, such antiferromagnets are nevertheless ordered states, and the pattern
of microscopic spins can be revealed by neutron scattering. The antiferro-
magnetic order can again be understood in terms of the associated symmetry
breaking.

In a mathematical description of ferromagnetism, the important variable is
the magnetization, ~mi = µ ~Si, where µ is the magnetic moment and ~Si the spin
on site i. In an ordered phase, the average value of all the spins is different from
zero, h~mii 6= 0. The magnetization is an example of an order parameter, which
is a quantity that has a non-zero average in the ordered phase. In a crystal it
is natural to think of the sites as just the atomic positions, but more generally
one can define “block spins” which are averages of spins on many neighbouring
atoms. The “renormalization group” techniques used to understand the theory
of such aggregate spins are crucial for understanding phase transitions, and
resulted in a Nobel Prize for Ken Wilson in 1982.

It is instructive to consider a simple model, introduced by Heisenberg, that
describes both ferro- and antiferromagnets. The Hamiltonian is
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Only even (±4⇡, ±8⇡ . . .)
vortices proliferate

All (±2⇡, ±4⇡ . . .)
vortices proliferate



Add terms which suppress single but 
not double vortices…..

eZXY =
Y

i

Z 2⇡

0

d✓i

2⇡
exp

⇣
� eHXY [✓]

⌘

eHXY [✓] = �J

X

hiji

cos(✓i � ✓j)

+
X

ijk`

Kijk` cos(✓i + ✓j � ✓k � ✓`) + . . . . . .

All allowed terms are invariant under a global U(1)
symmetry (✓i ! ✓i + c) and periodic in all the ✓i

(✓i ! ✓i + 2⇡ni, ni integers)
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We rewrite eZXY using the decomposition

 i = Hi�
2
i

where
Hi ⌘ e

i#i and �i ⌘ e
i'i

The idea is that single vortices in  will appear as single vortices
in H, while double vortices in  will appear as single vortices in �.

This decomposition now demands that any action be invariant
under the U(1) gauge transformations

#i ! #i + 2↵i , 'i ! 'i � ↵i

To obtain simple e↵ective actions, we also introduce a U(1) gauge
field Aiµ (µ = 1, 2, 3) which transforms as

Aiµ ! Aiµ +�µ↵i
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We now write down a U(1) gauge theory, ZU(1) consistent the U(1) gauge

invariance and the global symmetry

ZU(1) =

Y

i

Z 2⇡

0

d#i

2⇡

d'i

2⇡

Y

µ

dAiµ

2⇡
exp (�HU [#,', Aµ])

HU [#,', Aµ] = �J1

X

i,µ

cos(�µ#i � 2Aiµ)

�J2

X

i,µ

cos(�µ'i +Aiµ)

�K

X

⇤
cos(✏µ⌫��⌫Ai�)

Our claim is that this is the same theory as eZXY ; in particular

Y

i,µ

Z 2⇡

0

dAiµ

2⇡
exp (�HU [#,', Aµ]) ⇡ exp(� eHXY [#+ 2'])

This result follows from gauge invariance and the global U(1) symmetry, and

can be explicitly established by performing the integrals over Aiµ order-by-

order in K.
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Villain mapping:

eJ cos(✓) )
1X

n=�1
e(J/2)(✓�2⇡n)2

= #

1X

p=�1
ep

2/(2J)+ip✓

Villain action:

LV =
p21iµ
2J1

+ ip1iµ(�µ#i � 2Aiµ) +
p22iµ
2J2

+ ip2iµ(�µ'i +Aiµ)

+
m2

|µ

2K
+ im|µ✏µ⌫��⌫Ai�

Here i labels sites on the direct lattice, and | labels sites on the dual lattice. Now we

integrate over Aiµ and obtain p2iµ = 2p1iµ + ✏µ⌫��⌫m|�. So

LV = p21iµ

✓
1

2J1
+

2

J2

◆
+ ip1iµ�µ✓i �

2

J2
m|µ✏µ⌫��⌫p1i� +

(✏µ⌫��⌫m|�)
2

2J2
+

m2
|µ

2K

Note that the expression now only depends upon the gauge-invariant ✓i = #i + 2'i, and

the first two terms generate the nearest-neighbor XY term with

1

J
=

1

J1
+

4

J2

The others generate interactions around a plaquette similar to Kijk`. This can be seen in

an expansion in K: at small K we sum over m|µ = ±1 only to obtain the leading terms

of order e�1/K
. This term involves (✏µ⌫��⌫p1i�)2 and couples ✓i around a plaquette.
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First we examine the phase diagram by taking a
naive continuum limit of HU , and studying the
resulting mean-field theory

L = |(@µ � 2iAµ � ia
ext
µ )H|2 + s1|H|2 + u1|H|4

+ |(@µ + iAµ)�|2 + s2|�|2 + u2|�|4

+K(✏µ⌫�@⌫A�)
2 + Lmonopoles

We have included a fixed external field a
ext
µ which

couples to the current of the global U(1) charge.
The monopoles play a crucial role, similar to those
of vortices in the 2D XY model, and they will
strongly modify the mean-field phase diagram.
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Mean field phase diagram
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Mean field phase diagram
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ln(r) interactions in 2D. However, unlike 2D, in 3D
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free. This proliferation of monopoles implies that
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Structure of topological phase

The topological phase is in the regime s1 < 0 and s2 > 0 in the field theory

L = |(@µ � 2iAµ � ia
ext
µ )H|2 + s1|H|2 + u1|H|4

+ |(@µ + iAµ)�|2 + s2|�|2 + u2|�|4 +K(✏µ⌫�@⌫A�)
2 + Lmonopoles

Perform a boson-boson (i.e. particle-vortex) duality on the boson H, while
(temporarily) treating Aµ as a background field. This leads to a theory of
a dual boson (vortex)  coupled to a dual emergent gauge field Bµ

Ldual = |(@µ � iBµ) |2 + es1| |2 + eu1| |4 +
i

⇡
✏µ⌫�Bµ@⌫A� +

i

2⇡
✏µ⌫�Bµ@⌫a

ext
�

+ |(@µ + iAµ)�|2 + s2|�|2 + u2|�|4 +K(✏µ⌫�@⌫A�)
2 + Lmonopoles

Note that when s1 < 0, then es1 > 0: so both the  and � bosons are
massive. Also, a monopole changes U(1) flux by 2⇡ and this corresponds
to inserting two  bosons (each is a vortex carrying ⇡ flux); therefore

Lmonopoles = �
�
 
2 +  

⇤2�
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Structure of the topological phase
• The topological phase is described by a TQFT:

LTQFT =
i

⇡
✏µ⌫�Bµ@⌫A� +

i

2⇡
✏µ⌫�Bµa

ext
�

• The gapped complex boson � carries unit Aµ charge, and global U(1)
charges ±1/2.

• The gapped real boson  carries unit Bµ charge.

• The � and  particles are mutual semions.

• The bound state of � and  is a fermion, which also has mutual
semionic statistics with individual � and  particles.

• This topological order is the same as that of the ‘toric code’, the �
are e particles, and the  are m particles, and �- bound state is the
✏ particle. There is 4-fold ground state degeneracy on a large torus.

• The topological phase can also be identified with the deconfined phase
of an emergent Z2 gauge theory. The � particle has a Z2 electric
charge, the  particle carries Z2 magnetic flux, and �- bound state
is a fermionic dyon.

• The topological phase also describes Anderson’s ‘RVB’ for spin S =
1 antiferromagnets, identified here as a ‘Z2 spin liquid’. The S =
1/2 case is similar, but not identical. An important di↵erence is the
presence of an ’t-Hooft anomaly between translations and the global
U(1) symmetry, which prevents the existence of a trivial SRO phase.

• The transition between the topological phase and SRO phase is de-
scribed by a Ising* theory for  alone. (The * implies that critical
point CFT only includes operators invariant under  ! � .) Ignor-
ing the massive � near the critical point, and integrating Aµ to Higgs
Bµ, we obtain the Ising Wilson-Fisher field theory

LI = |@µ |2 + es1| |2 + eu1| |4 + �
�
 2 +  ⇤2�
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All (±2⇡, ±4⇡ . . .)
vortices proliferate
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