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& Non-zero T (classical) phase transitions of
superfluids, magnets with "easy-plane’ spins,
.....in D spatial dimensions

¢ T=0 (quantum) phase transitions of bosons
at integer filling between superfluid and
insulator in D-/ spatial dimensions



In dimension|D = 3,|in the low 1" phase, the symmetry 6, —
0; 4+ c is “spontaneously broken”. There is (off-diagonal) long-
range order (LRO) characterized by (¥; = ‘%)

lim (U, 0%) = |¥o|* #0.
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We break the symmetry by choosing an overall phase so that

Wilson-Fisher theory
U,) =0
(Wi) = To 70 (Nobel Prize, 1982)
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Kosterlitz-Thouless theory in D=2

In spatial dimension|D = 2,|the symmetry 6, — 6, + c is
preserved at all non-zero T'. There is no LRO, and

(W;) =0 for all T' > 0.

Nevertheless, there is a phase transition at 1" = Txp,
where the nature of the correlations changes

i — 1|7, for ' < Txr, (QLRO)
|ri—rj|—00 exp(—|r; —r;|/¢),  for T'> Txr, (SRO)
KT theory

(Nobel Prize, 2016)
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Kosterlitz- Thouless theory in D
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Topological order
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Vortices proliferate

The low 1" phase also has topological order associated

with the suppression of vortices.

KT theory
(Nobel Prize, 2016)




|. Classical XY model in 2 and
3 dimensions
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2. Topological order in the
classical XY model in
3 dimensions




Can we modify the XY model
Hamiltonian to obtain a phase with
“topological order” in D=3 ?
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(W3) =0 SRO
(©:5) ~ exp(—|ri —751/¢)  Topological
order
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(W3) =0 SRO
(©:5) ~ exp(—|ri —751/¢)  Topological
order

Only €evell (::47'(', 37 . . )
vortices proliferate
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vortices proliferate
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Add terms which suppress single but
not double vortices.....

All allowed terms are invariant under a global U(1)
symmetry (6; — 6; + ¢) and periodic in all the 6;
(‘97, — 92 -+ 27’(’%7;, n; integers)



We rewrite Z xy using the decomposition
U; = H;;

where
H;, = ¢ and O; = e'¥"

The idea is that single vortices in ¥ will appear as single vortices
in H, while double vortices in W will appear as single vortices in ¢.

This decomposition now demands that any action be invariant
under the U(1) gauge transformations

Ui = Vi + 20, wi =0 —

To obtain simple effective actions, we also introduce a U(1) gauge
field A;, (© = 1,2,3) which transforms as

Ai,u — Ai,u —+ AMOQ



We now write down a U(1) gauge theory, Zg (1) consistent the U(1) gauge
invariance and the global symmetry

2T
do; d% dA;,
2u(1) = H/ o L] 5 exp (“Hu 9, ¢, Au))

Hy v, o = —J; ZCOS 24;,)
—J5 Z cos(A i + Aiy)
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Our claim is that this is the same theory as zZ xvy; In particular

27
dA; N
H/ 27: exp (—Hu[0, o, A,]) = exp(—Hxy [V + 2¢))
- Jo

This result follows from gauge invariance and the global U(1) symmetry, and
can be explicitly established by performing the integrals over A;,, order-by-
order in K.



Villain mapping:

eJcos(Q):> Z e(J/Z)(G—an)QZ# Z €p2/(2J)—|—ip(9

n——o0 p=—00
Villain action:
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Here 7 labels sites on the direct lattice, and j labels sites on the dual lattice. Now we
integrate over A;,, and obtain ps;, = 2p1i, + €4a DM . SO

1 2 , 2 € ,/)\Aym A\ 2 m
Ly = p%z’,u ( T > + Zplz',uA,uHi — _mj,ue,uz/)\Aupli)\ =+ ( = - ) + S

2Jl JZ JQ 2J2 2K

Note that the expression now only depends upon the gauge-invariant 6; = v; + 2¢;, and
the first two terms generate the nearest-neighbor XY term with

1 1 4

J-h

The others generate interactions around a plaquette similar to K, . This can be seen in
an expansion in K: at small K we sum over m,, = &1 only to obtain the leading terms
of order e~ /K This term involves (€urAupii >\)2 and couples 6; around a plaquette.



First we examine the phase diagram by taking a
naive continuum limit of Hy, and studying the
resulting mean-field theory

L=10,—2A, — z’aZXt)H\Q + 51| H|* + wq | H|*
+ (0 + 1AL D|* + s2|0|° + ua|d|®

K(e,uy)\ayA)\)Q

»Cmonopoles

We have included a fixed external field a®* which

U

couples to the current of the global U(1) charge.
The monopoles play a crucial role, similar to those
of vortices in the 2D XY model, and they will

strongly modify the mean-field phase diagram.



Mean field phase diagram
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Mean field phase diagram
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Mean field phase diagram

SRO 72 SRO
Topological order Emergent gapless “photon”
Only even (+4m, £8m...) All (27, £4r...)
vortices proliferate vortices proliferate
(W) =0 (W) =0
(H) #0, () =0 (H) =0, (6)=0
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The emergent “photon” phase is unstable to the
proliferation of monopoles. The monopoles form a
Coulomb plasma with 1/r interactions in 3D, very
similar to the Coulomb plasma of vortices with
In(r) interactions in 2D. However, unlike 2D, in 3D
there is never a state where monopoles are bound
to antimonopoles. The 1/r interactions are always
Debye screened, and the monopoles are effectively
free. This proliferation of monopoles implies that
there is no emergent gapless photon.
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Phase diagram

SRO 52 SRO
Topological order
Only even (+4m, £8m...) All (27, +47...)
vortices proliferate vortices proliferate
(T) =0 (U) =0
(H) £0, (8)=0 (H) =0, (9)=0
Crossover
(H) #0, (o) #0 (H) =10, (¢)#0
(@) #0 (¥) =0
SRO
RO No topological
order
All (27, +4m...)

vortices proliferate



Structure of topological phase

The topological phase is in the regime s; < 0 and s > 0 in the field theory
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Perform a boson-boson (i.e. particle-vortex) duality on the boson H, while
(temporarily) treating A,, as a background field. This leads to a theory of
a dual boson (vortex) ¢ coupled to a dual emergent gauge field B,
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Perform a boson-boson (i.e. particle-vortex) duality on the boson H, while

(temporarily) treating A,, as a background field. This leads to a theory of
a dual boson (vortex) ¢ coupled to a dual emergent gauge field B,
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Note that when s; < 0, then s; > 0: so both the v and ¢ bosons are
massive. Also, a monopole changes U(1) flux by 27 and this corresponds
to inserting two 1 bosons (each is a vortex carrying 7 flux); therefore

(»Cmonopoles = A (¢2 + ¢*2))




Structure of the topological phase

e The topological phase is described by a TQFT:

’ . ex
»CTQFT = WG,UJ/AB 0, A\ + 27_‘_6“,/ \B nay ¢

e The gapped complex boson ¢ carries unit A, charge, and global U(1)
charges +1/2.
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Structure of the topological phase

The topological phase is described by a TQFT:

’ . ex
»CTQFT = ﬂ_ew/)\B 0, A\ + 27_‘_6“” \B 1y ¢

The gapped complex boson ¢ carries unit A,, charge, and global U(1)
charges +1/2.

The gapped real boson v carries unit B,, charge.
The ¢ and 9 particles are mutual semions.

The bound state of ¢ and 1) is a fermion, which also has mutual
semionic statistics with individual ¢ and @ particles.

This topological order is the same as that of the ‘toric code’, the ¢
are e particles, and the 1 are m particles, and ¢-9 bound state is the
e particle. There is 4-fold ground state degeneracy on a large torus.



Structure of the topological phase

e The topological phase can also be identified with the deconfined phase
of an emergent Zs gauge theory. The ¢ particle has a Zg electric
charge, the 1 particle carries Zs magnetic flux, and ¢-1 bound state
is a fermionic dyon.
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e The topological phase also describes Anderson’s ‘RVB’ for spin S =
1 antiferromagnets, identified here as a ‘Zs spin liquid’. The § =
1/2 case is similar, but not identical. An important difference is the
presence of an 't-Hooft anomaly between translations and the global
U(1) symmetry, which prevents the existence of a trivial SRO phase.
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e The topological phase can also be identified with the deconfined phase
of an emergent Zs gauge theory. The ¢ particle has a Zg electric
charge, the 1 particle carries Zs magnetic flux, and ¢-1 bound state
is a fermionic dyon.

e The topological phase also describes Anderson’s ‘RVB’ for spin S =
1 antiferromagnets, identified here as a ‘Zs spin liquid’. The § =
1/2 case is similar, but not identical. An important difference is the
presence of an 't-Hooft anomaly between translations and the global
U(1) symmetry, which prevents the existence of a trivial SRO phase.

e The transition between the topological phase and SRO phase is de-
scribed by a Ising™® theory for 1 alone. (The * implies that critical
point CFT only includes operators invariant under v — —1).) Ignor-
ing the massive ¢ near the critical point, and integrating A, to Higgs
B,,, we obtain the Ising Wilson-Fisher field theory

L1 = 0,012 + 51012+ Tlo* + X (¥% + ¢*?)
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