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A simple model of a metal with quasiparticles
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Fermions occupying the eigenstates of a
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A simple model of a metal with quasiparticles

Feynman graph expansion in ¢;; , and graph-by-graph average,
yields exact equations in the large IV limit:
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G(w) can be determined by solving a quadratic equation.
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A simple model of a metal with quasiparticles

Let ¢, be the eigenvalues of the matrix ¢;;/ V' N.
The fermions will occupy the lowest N O eigen-
values, upto the Fermi energy Er. The single-
particle density of states is

p(w) — (/N) Za 5((,0 — 504)7 and pg = p(w — O)
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A simple model of a metal with quasiparticles
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A simple model of a metal with quasiparticles

The grand potential (7") at low T is (from the Sommerfeld expansion)
2
QGU—EW:N<—€mﬂQ+OUﬂ>+”.

where pg = p(0) is the single particle density of states at the Fermi level.
We can also define the many body density of states, D(FE), via

7 = e UD)/T /OO dED(E)e E/T

The inversion from €(7T') to D(F) has to performed with care (it need not commute
with the 1/N expansion), and we obtain

3 N

2N po(E — E 1
D(E)Nexp<7r\/ ol 0)> ., E>Ey, — < po(E—Ep) <N

and D(FE) = 0 for E < Ey. This is related to the asymptotic growth of the partitions
of an integer, p(n) ~ exp(m+/2n/3). Near the lower bound, there are large sample-
to-sample fluctuations due to variations in the lowest quasiparticle energies.



A simple model of a metal with quasiparticles

Now add weak interactions

_ T T
o 1/2 thﬂczcﬂ “ZCC’L 2N)3/2 Z UZJWC 5 CkCe

7] 1 ,jk'£ 1

U;j.xe are independent random variables with U;;.xe = 0 and |Uy;.x¢|? = U?. We
compute the lifetime of a quasiparticle, 7., in an exact eigenstate (i) of the
free particle Hamitonian with energy ¢,. By Fermi’s Golden rule, for ¢, at the
Fermi energy

Ti — 7U2P3/d55d5vd55f(55)(1 — f(ey))(1 = f(es5))0(ea + €5 — €4 — €5)
_ 7T3U2,0% T2
A

where pg is the density of states at the Fermi energy, and f(e) = 1/(e¥/™T +1) is
the Fermi function.

Fermi liquid state: Two-body interactions lead to a scattering time
of quasiparticle excitations from in (random) single-particle eigen-
states which diverges as ~ T2 at the Fermi level.
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The complex SYK model

(See also: the “2-Body Random Ensemble” in nuclear physics; did not obtain the large N limit;
T.A. Brody, ). Flores, |.B. French, PA. Mello, A. Pandey, and S.S.M.Wong, Rev. Mod. Phys. 53, 385 (1981))

N
1
o (2N)3/2 > Usgimeeicjopey =1 cic;

i dk 0=1 i

CZ'C]‘ -+ CjCZ' = ( ; C,L-C}L- -+ C;r-CZ- - 6@']’

O = %chcz

U;;.xe are independent random variables with Uy;.xe = 0 and |U;;.5e|? = U?
N — oo yields critical strange metal.

S.Sachdev and |.Ye, PRL 70, 3339 (1993)
A. Kitaey, unpublished; S. Sachdev, PRX 5,041025 (2015)



The complex SYK model

Feynman graph expansion in U;;ke, and graph-by-graph average, yields ex-
act equations in the large N limit:

G

S.Sachdev and ].Ye, Phys. Rev. Lett. 70, 3339 (1993)



The complex SYK model

Solution of these equations and corresponding evaluation of the free en-
ergy yields the following universal results (7.e. all results are quantitatively
unchanged by adding additional higher ¢ fermion terms):




The complex SYK model

Solution of these equations and corresponding evaluation of the free en-
ergy yields the following universal results (7.e. all results are quantitatively
unchanged by adding additional higher ¢ fermion terms):

e At long times, and at T = 0, G(7) ~ |7|722 with A = 1/q (=
indication there are no quasiparticles)

S.Sachdev and ].Ye, Phys. Rev. Lett. 70, 3339 (1993)



The complex SYK model

Solution of these equations and corresponding evaluation of the free en-
ergy yields the following universal results (7.e. all results are quantitatively
unchanged by adding additional higher ¢ fermion terms):

e At long times, and at T = 0, G(7) ~ |7|722 with A = 1/q (=
indication there are no quasiparticles)

e At general charge O, there is a spectral symmetry determined by a
parameter &:

—T 7T >0
G(T)N{ —27r5(_ )—QA <0 , 1'=0

S.Sachdev and ].Ye, Phys. Rev. Lett. 70, 3339 (1993)



The complex SYK model

Solution of these equations and corresponding evaluation of the free en-
ergy yields the following universal results (7.e. all results are quantitatively
unchanged by adding additional higher ¢ fermion terms):

e At long times, and at T = 0, G(7) ~ |7|722 with A = 1/q (=
indication there are no quasiparticles)

e At general charge O, there is a spectral symmetry determined by a
parameter &:

—2A
—T T >0
G(T) ~ T =0
( ) 6—271‘5(_7_)—2A <0 9
e There is a universal ‘Luttinger relation’ between —oo < & < oo and
the total charge 0 < O <1 A. Georges, O. Parcollet,
and S. Sachdev, PRB 63,
. 134406 (2001)
627T5 _ SIH(T('A + 9) R. Davison,Wenbo Fu,
SiIl(T&'A — (9) A. Georges,Yingfei Gu,

K.Jensen, S.Sachdev, PRB

Q — 1 9 | A o 1 Sln(29) 95, 155131 (2017)
2 ) sin(2wA)
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The complex SYK model

Solution of these equations and corresponding evaluation of the free en-
ergy yields the following universal results (7.e. all results are quantitatively
unchanged by adding additional higher ¢ fermion terms):

e At T' > 0, we obtain a solution with a conformal structure
6—271‘8T7' T 1/2
G(t)=-A , O0< 7 <1/T,
(7) V1 + e—4mE <sin(7rT7')> ! /

where the ‘particle-hole asymmetry’ is determined by £

A. Georges and O. Parcollet PRB 59,5341 (1999)
S.Sachdey, PRX 5,041025 (2015)



The complex SYK model

We now examine the behavior of the chemical potential, u, as T — 0 at
fixed Q. For this we relate the long-time ‘conformal” Greens function, (valid
for 7> 1/U) to its short-time behavior. In particular at |w,| > U we have

. 1 noo
G(’Lwn) — iwn (@'wn)Q e e

which implies for the spectral density of the Green’s function, p(€2)

uz—/oo @Qp(ﬁ),

o T

which makes it evident that pu depends only upon the particle-hole asym-
metric part of the spectral density. Next, we can relate the () integrals to
the derivative of the imaginary time correlator

nw=—-0.G(tr=0")—-0,G(r = (1/T)7).



The complex SYK model

We pull out an explicitly particle-hole asymmetric part of G(7) by defining

1
Gr)=e *™1"G.(1) , 0<o< 7

where GG. will be given by a particle-hole symmetric conformal form at low
T and low w. Then we obtain

p o= 2r€T |G(r=0")+G(r=(1/T)7)| — drg(r =07)
+ terms dependent on G,
= —2w&T + terms dependent on G,

It can be shown that all the terms dependent upon GG, have a 1" dependence
that is weaker than linear in 7" provided @ is held fixed. Hence we have

= g — 2w€&T + terms vanishing as T? with p > 1

with pg a non-universal constant. From this relation we obtain



The complex SYK model

with pg a non-universal constant. From this relation we obtain

oL
— — — T —
<8T>Q 2rE 0,

Using a Maxwell relation we then have

1 [0S
— == ] =2 T — 0.
N<0Q)T & # 0 as 0



The complex SYK model

Solution of these equations and corresponding evaluation of the free en-
ergy yields the following universal results (7.e. all results are quantitatively
unchanged by adding additional higher ¢ fermion terms):

e There is a non-vanishing entropy in the zero temperature limit

A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001)



The complex SYK model

Solution of these equations and corresponding evaluation of the free en-
ergy yields the following universal results (7.e. all results are quantitatively
unchanged by adding additional higher ¢ fermion terms):

e There is a non-vanishing entropy in the zero temperature limit

e The saddle point equations imply the relation

dSO
70 9
10 &

Integrating this relation from sg = 0, @ = 0, allows us to compute sg
as a function of O.

A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001)



The complex SYK model
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There are 2"V many body levels
with energy E. Shown are all
values of E for a single cluster of
size N = 12. The 1" — 0 state has
an entropy Sqgps = Nsg, where
So < In2 is determined by
integrating

@:27#;.

dQ
At Q=1/2,

G

T

In(2
(2) _ 464848 .

S0

where G 1s Catalan’s constant.

GPS: A. Georges, O. Parcollet, and S. Sachdey,
PRB 63, 134406 (2001)

W. Fu and S. Sachdev, PRB 94, 035135 (2016)
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S. Sachdev, Phys. Rev. Lett. 105, 151602 (2010)
S.Sachdev, PRX 5, 041025 (2015)
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Charged black holes
SEM _ i/dd—l—Zaj\/jg (R | 52 L2F2>

22 g%
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ch2—-—VXrﬁﬁ2+42dQQ%—(h2 depf1oT0 ) g
T d V(T) ) — M

r? Sk M
Vir)=1+ 72 + r2d—2  pd—1°

(Black hole
horizon I

of radius rg
N\ )

where df)7 is the metric of the d-sphere. All parameters of the solution are
determined in terms of the chemical potential u, and the Hawking temperature

of horizon, T. A. Chamblin, R. Emparan, C.V.Johnson, and R.C. Myers, PRD 60, 064018 (1999)



Charged black holes

In the T" — 0 limit, at fixed u, we obtain a charged black hole
solution with radius ro(T" — 0,u) = Rp. All properties of this
black hole can be expressed in terms of Ry,

e The total charge in the black hole is

_ Ry V2d[(d+ )R} + (d - 1)L7]

’1295’

Q

A. Chamblin, R. Emparan, C.V. Johnson, and R.C. Myers, PRD 60, 064018 (1999)



Charged black holes

In the T" — 0 limit, at fixed u, we obtain a charged black hole
solution with radius ro(T" — 0,u) = Rp. All properties of this
black hole can be expressed in terms of Ry,

e The total charge in the black hole is

R\ /2d[(d+1)R? + (d — 1)L?]
K2R

Q =

e The Bekenstein-Hawking entropy remains finite as T" — 0 (s4
is the area of the d-dimensional surface of a unit sphere)

QWSd

S(T%O):SQ—F... ;s So = Rd

K2

A. Chamblin, R. Emparan, C.V. Johnson, and R.C. Myers, PRD 60, 064018 (1999)



Charged black holes

In the T" — 0 limit, at fixed u, we obtain a charged black hole
solution with radius ro(T" — 0,u) = Rp. All properties of this
black hole can be expressed in terms of Ry,

e In the near-horizon region, we change co-ordinates from r to
( so that

RZ LR
r—Rp,=="2 |, Ry= ki .
Vd(d+1)R2 + (d —1)2L2

G

Then the near-horizon metric becomes AdSs x Sg4, with

—dt? + d¢?
CQ

where the dimensionless electric field £ is

E

ds® = R;

_ grR/2d[[d+ DRE + (=1L

& 20d(d+ 1)R? + (d — 1)2L7]



Charged black holes

total S 2
- ~ charge QO
e
. =~ 7.2 2 2\ /2 =2
of radius Ry, BN — dt°)/C“ + dx
_and entropy so Gauge field: A = (£/()dt
x

e The entropy sg, the charge O, and the dimensionless
electric field £ obey

dS()
—— =27&€
0

A.Sen, JHEP 0509, 038 (2005)



Charged black holes

Dimensional reduction to 2D gravity

We neglect all dependence of the metric on angular co-ordinates,
introduce a scalar field ¢(r,7), and write the 4D metric as

1
ds® = —= hgpdax®dz’ + ¢ dQ3
Vo

where a,b = x, 7 and hg 1s a 2D metric. Then the 4D action Sg
reduces to an action for 2D gravity

2
S = 2—7;- d2£13\/ —h <¢ Rop + V(¢) Z(¢2)L F2>
K gF
with , ;
V)= =+ 2 7(g)= g

Vo o L
This describes Jackiw-Teitelbaum 2D gravity, along with a 2D elec-
tromagnetic field.



Charged black holes
Probe fermion in the AdS; near horizon

e A probe fermion has a near-horizon Green’s function with a
conformal structure

—27wET'T
G(r)=—-A c ( L

\/1 + 6—471‘5

where the ‘particle-hole asymmetry’ is determined by £. This
is identical to the complex SYK model.

1/2
)> , 0<7<1/T,

sin(7w’l'T

T. Faulkner, Hong Liu, J. McGreevy, D.Vegh, PRD 83, 125002 (201 1)
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The SYK model

S.Sachdev and ].Ye, Phys. Rev. Lett. 70, 3339 (1993)



The SYK model

At frequencies < U, the w

1 can be dropped,

and without it equations are invariant under the
reparametrization and gauge transtormations.
The singular part of the self-energy and the Green’s

function obey

B
/ 07> Saine (71, 72) G (72, 73) = —3(71 — 73)
0

Esing (7-17 7-2) — _U2G2 (7-17 TQ)G<TQ7 7-1)

A. Kitaey, 2015
S.Sachdev, PRX 5, 041025 (2015)



The SYK model

B
/ dro X(11,72)G(T2,73) = —0(T1 — T3)
0

2(7'177'2) — —UQGQ(Tl,TQ)G(TQ,Tl)

These equations are invariant under

r = (o)

~

01

N T (oA 9O &
G(m,m2) = |f(01)f (02)] o(0s) G(o1,02)
.7 = [f (o) f (o _3/4g(al)~0 %
X(11,72) = [f (01)f (02)] o(0n) ¥ (o1, 02)

where f(o) and g(o) are arbitrary functions.
By using f(o) = tan(nTo)/(7T) we can
now obtain the T > 0 solution from the 7" = 0 solution.

A. Kitaey, 2015
S.Sachdev, PRX 5, 041025 (2015)



The SYK model

Let us write the large N saddle point solutions of S as

GS(Tl_TQ) ~ (7’1—7'2)_1/2

25(7'1—7'2) ~ (7’1—7'2)_3/2.
The saddle point will be invariant under a reperamateri-
zation f(7) when choosing G(11,72) = Gs(11 — 73) leads
to a transformed G(o1,02) = Gs(01 — 02) (and similarly
for ). It turns out this is true only for the SL(2, R)
transformations under which

at + b

- e =1.
f(r) T d ad — be

So the (approximate) reparametrization symmetry is spon-
taneously broken down to SL(2, R) by the saddle point.

A. Kitaev



Fluctuations
e The saddle-point

—2wET (11 —72)

V1 + e—4mE <Siﬂ(7TT(€1 - 72))>2A

€

G(Tl_TQ): A

is invariant only under PSL(2, R) transformations which map
the thermal circle onto itself, and an associated gauge trans-
formation

tan(77'T)
tan(7Tf(7)) 4 -
= , ad—bc=1,
T tan(77'T)
C - d
il

—1p(T7) = —igpg + 27ET (1 — f(1))
A. Kitaev, 2015
R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdev, PRB 95, 155131 (2017)



Infinite-range (SYK) model without quasiparticles

After introducing replicas a = 1...n, and integrating out the dis-

order, the partition function can be written as

I &
- dm;;a(
ia 70

B
Z / drdr’
0

7 = /DCm(T) exp

U2

 4N3
ab

1

o(T)cin(T')

9 N\
ot v

4

For simplicity, we neglect the replica indices, and introduce the

identity

1 = /DZ(Tl,TQ)eXp

I B
—N/ dTldTQZ(Tl,TQ) <G(TQ,7’1)
0

-+ % Z cdw)cj{(n))




Infinite-range (SYK) model without quasiparticles

Then the partition function can be written as a path integral with
an action S analogous to a Luttinger-Ward functional

Z = /DG(Tl,Tg)DZ(Tl,Tg)exp(—NS)
S =1Indet [6(T — 72)(0r, + 1) — 2(71,72)]
4 /dﬁdTgE(ﬁ,Tz) [G(Tz,ﬁ) + (U2/2)G2(7'277'1)G2(7'1>7'2)]

At frequencies < U, the time derivative in the determinant is less
important, and without it the path integral is invariant under the

reparametrization and gauge transformations A. Georges and O, Parcollet
PRB 59, 5341 (1999)

T = f(o) A. Kitaev, 2015

S. Sachdev, PRX 5, 041025 (2015)

G(r1,72) = [f'(o0) ' (02)]) " 9(71) G(o1,02)

(02)
~3/4 g(o1)

Y(11,72) = [f'(01)f (02)]

where f(o) and g(o) are arbitrary functions.



The SYK model

Reparametrization and phase zero modes
We can write the path integral for the SYK model as

Z = /DG(T:[,Tl)DZ(Tl,TQ)e_NS[G’E]

for a known action S|G, X|. We find the saddle point, G, ¥, and only focus on the
“Nambu-Goldstone” modes associated with breaking reparameterization and U(1)
gauge symmetries by writing

G(Tl,TQ) — [f/(Tl)f/(TQ)]1/4Gs(f(Tl) o f(TQ))eiqb(Tl)—iqb(Tg)

(and similarly for ). Then the path integral is approximated by

z /Df(T)D¢(T)6_NSeff[fa¢].

J. Maldacena and D. Stanford, arXiv:1604.07818;

R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdey, arXiv.1612.00849;

S.Sachdev, PRX 5, 041025 (2015); J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857;
K.Jensen, arXiv:1605.06098; |. Engelsoy, T.G. Mertens, and H.Verlinde, arXiv:1606.03438



Fluctuations

Symmetry arguments, and explicit computations, show that the effective action is

/T /T
Salf.dl= =5 | dr@.¢+ieneT)o, - 15 [ dr{tan(Tf(r). 7).
0 ™ Jo

where f(7) is a monotonic map from [0,1/7] to |0,1/T], the couplings K, v, and £
can be related to thermodynamic derivatives and we have used the Schwarzian:

2
B g/// 3 g//
{97 T} T g/ 2 ( g/ ’

Specifically, an argument constraining the effective at I' = 0 is

at + b

Sar | 1) = 20, 0(r) = 0| =0,

and this is origin of the Schwarzian.

J. Maldacena and D. Stanford, arXiv:1604.07818;
R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdev, PRB 95, 155131 (2017);
A. Gaikwad, L.K. Joshi, G. Mandal, and S.R.WVadia, arXiv:1802.07746



Fluctuations

An ezxact path integral over the effective action leads to the
following physical consequences

e The ground state energy with fermion number NO + p
(p integer) varies as

p2

2N K

This identifies K with the compressibility K = dQ/du
at 1" = 0.

E, = Fo




Fluctuations

An ezxact path integral over the effective action leads to the
following physical consequences

e The ground state energy with fermion number NO + p
(p integer) varies as

P2
L, = Eqg A
PP T ONK
This identifies K with the compressibility K = dQ/du

at 1" = 0.

e The low temperature corrections to the entropy at fixed

Q are
S(T — 0, Q) :N[SO—I—’}/T—F...} +2In(U/T) ...

This defines v as the co-efficient of the linear-in-1" specific
heat (at fixed Q)

D. Stanford and E.Witten, arXiv:1703.04612;A. Kitaev and S. Josephine Suh, arXiv:1711.08467



Fluctuations

An ezxact path integral over the effective action leads to the
following physical consequences

The many-body density of states, D(F), is related to the grand potential,
Q(T) by

7 = SHD/T = /OO dED(E)e E/T

— 0

We obtain

D(E) = i e*™* d(E — E)

p=—00

where VO + p is the integer fermion number,

d(E) ~ exp (N'sg) sinh (\/QNWE) CE>0,eN<yE<N

There are exponentially more low energy states than for the quasiparticle
case, and D(F) self-averages down to energies exponentially small in V.

J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M.Tezuka, arXiv:1611.04650;
A.M. Garcia-Garcia and J.J.M.Verbaarschot, arXiv:1701.06593; D. Bagrets, A. Altland, and A. Kameney, arXiv:1702.08902;
D. Stanford and E.Witten, arXiv:1703.04612; A. Kitaev and S.J. Suh, arXiv:1711.08467



The complex SYK model
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where G 1s Catalan’s constant.
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W. Fu and S. Sachdev, PRB 94, 035135 (2016)
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D. Stanford and E.Witten, arXiv:1703.04612; A. Kitaev and S.J. Suh, arXiv:1711.08467



Fluctuations

An ezxact path integral over the effective action leads to the
following physical consequences

e At charge NQ + p, the prefactor of the sinh(/2N~(E — E,)) term is
exp [Nso(Q) + 2mp€| ~ exp [Nso(L + p/N)|

using
dSO
i)
70 &






The Schwarzian theory and black holes

e Reparameterization invariance is a defining property
of Einstein’s theory of gravity

e In imaginary time, AdSs is the homogeneous hyper-
bolic space: two-dimensional surface of constant neg-
ative curvature. Its metric is invariant under SL(2,R)

ds? = (d1? + d(?)/¢? is invariant under

a(t +1iC) + b
c(t+i()+d

T with ad — bc = 1.
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A. Kitaev, 2015
J- Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857



The Schwarzian theory and black holes

e Reparameterization invariance is a defining property
of Einstein’s theory of gravity

e In imaginary time, AdSs is the homogeneous hyper-
bolic space: two-dimensional surface of constant neg-
ative curvature. Its metric is invariant under SL(2,R)

Semiclassical fluctuations about the
saddle-point of Einstein-Maxwell
theory of a charged black holes in

d > 2 spatial dimensions lead to
the same Schwarzian+phase the-
ory of fluctuations.

P. Nayak, A. Shukla, R.M. Soni, S.P. Trivedi, and V.Vishal, arXiv:1802.09547 &
U. Moitra, S. P. Trivedi, and V.Vishal, arXiv: | 808.08239

P. Chaturvedi,Yingfei Gu,Wei Song, Boyang Yu, arXiv:1808.08062

A. Gaikwad, L.K. Joshi, G. Mandal, and S.R.WVadia, arXiv:1802.07746
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The Schwarzian theory and black holes

e The Einstein-Maxwell theory leads to the following
parameters for the Schwarzian+phase theory

e _2(d - 1)L2s4R$ 5 [d(d + 1)R? + (d — 1)2L?]
dp | p—g (d+1)g3k?

S(T'—0,9) =59 +T + ...

y = 47T2deL2Rg+1

k2(d(d+ 1)R; + (d —1)2L2)




(Quantum matter without quasiparticles)

e Planckian dynamics is realized in the ‘solvable’ SYK

models

e Black holes thermalize in a time ~ h/(kgTy), where Ty
is the Hawking temperature.

e A Schwarzian theory of a time reparameterization mode,
with SL(2,R) symmetry, describes the quantum dynam-

ics of

— the SYK model

S

— black holes wit!

n near-extremal AdS» horizons



