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BCS theory of vortices in d-wave superconductors
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Vortices in BCS superconductors near a

superconductor-Mott insulator transition at finite doping



The cuprate superconductor Ca,_  Na, CuO,Cl,

0.02

T. Hanaguri, C. Lupien, Y. Kohsaka, D.-H. Lee, M. Azuma, M. Takano, H. Takagi, and J.
C. Davis, Nature 430, 1001 (2004). Closely related modulations in superconducting
B1,Sr,CaCu,Og, 5 observed first by C. Howald, H. Eisaki, N. Kaneko, and A. Kapitulnik,
cond-mat/0201546 and Physical Review B 67, 014533 (2003).



The cuprate superconductor Ca,_  Na, CuO,Cl,
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Evidence that holes can form an insulating state with period =~ 4
modulation in the density

T. Hanaguri, C. Lupien, Y. Kohsaka, D.-H. Lee, M. Azuma, M. Takano, H. Takagi, and J.
C. Davis, Nature 430, 1001 (2004). Closely related modulations in superconducting
B1,Sr,CaCu,Og, 5 observed first by C. Howald, H. Eisaki, N. Kaneko, and A. Kapitulnik,
cond-mat/0201546 and Physical Review B 67, 014533 (2003).



STM around vortices induced by a magnetic field in the superconducting state

J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan,
H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002).
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Vortex-induced LDOS of Bi,Sr,CaCu,0Og, s integrated
from 1meV to 12meV at 4K

Vortices have
halos with
LDOS

modulations at a
period = 4 lattice
spacings

Prediction of periodic LDOS
modulations near vortices:
K. Park and S. Sachdev, Phys.
Rev. B 64, 184510 (2001).

J. Hoffman et al., Science 295, 466 (2002).
G. Levy et al., Phys. Rev. Lett. 95, 257005 (2005).



Questions on the cuprate superconductors

* What 1s the quantum theory of the ground state as it
evolves from the superconductor to the modulated

insulator ?

* What happens to the vortices near such a quantum
transition ?
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[. The superfluid-insulator transition of
bosons



Bosons at filling fraction f =1 _ _
- | Weak interactions:

superfluidity

Strong interactions:

Mott insulator which

preserves all lattice
symmetries

M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and 1. Bloch, Nature 415, 39 (2002).



Bosons at filling fraction f =1
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Bosons at filling fraction f =1
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Strong interactions: insulator H




Bosons at filling fraction f=1/2

or S=1/2 XXZ model
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Bosons at filling fraction f=1/2
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Bosons at filling fraction f=1/2
or S=1/2 XXZ model

Strong interactions: insulator H

Insulator has *““density wave” order




Bosons at filling fraction f=1/2
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Charge density
wave (CDW) order

Interactions between bosons ——»
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Bosons at filling fraction f = 1/2
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N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
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N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).



Bosons at filling fraction f=1/2
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N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
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N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).



The superfluid-insulator quantum phase transition

Key difficulty: Multiple order parameters (Bose-
Einstein condensate, charge density wave, valence-
bond-solid order...) not related by symmetry, but

clearly physically connected. Standard methods only
predict strong first order transitions (for generic

parameters).




The superfluid-insulator quantum phase transition

Key difficulty: Multiple order parameters (Bose-
Einstein condensate, charge density wave, valence-
bond-solid order...) not related by symmetry, but

clearly physically connected. Standard methods only
predict strong first order transitions (for generic

parameters).

Key theoretical tool: Quantum theory of vortices
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II. The quantum mechanics of vortices near a
superfluid-insulator transition

Dual theory of the superfluid-insulator transition
as the proliferation of vortex-anti-vortex-pairs



Excitations of the superfluid: Vortices and anti-vortices
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Central question:
In two dimensions, we can view the vortices as
point particle excitations of the superfluid. What
1s the quantum mechanics of these “particles” ?




In ordinary fluids, vortices experience the Magnus Force

Lower air pressure

F = (mass density of air) « (velocity of ball) « ( circulation )



For a vortex in a superfluid, this is

Fo = (mp) ((vs—%tﬁ) xi) (j{vs-dr)

dr, .
= nhp(vs— CZ)XZ

where p = number density of bosons

vy = local velocity of superfluid

r, = position of vortex



For a vortex in a superfluid, this is

dr,, A
F,, = (mp)((vs—g{) xz) (fvs-dr)
= nhp (Vs — d—) X Z
B ( drv y B)
where — s XzZand B = —hpz

Dual picture:
The vortex is a quantum particle with dual “electric”

charge N, moving in a dual “magnetic” field of
strength = hx(number density of Bose particles)

C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981); D.R. Nelson, Phys. Rev. Lett. 60,
1973 (1988); M.P.A. Fisher and D.-H. Lee, Phys. Rev. B 39, 2756 (1989)



Let the Hamiltonian of a single vortex be H,.

In general, this is a very complicated object, but we can
obtain all needed information by symmetry considera-
t1lons.

The Hamiltonian H, should commute with T}, the oper-
ator which translates the square lattice by one site in the
z direction (and similarly for 7))):




However, T, and 7, do not commute with each other.

Under translation along a distance s, a vortex picks up a
a Aharanov-Bohm phase factor exp (z fos dr - A).

Consequently
T, T, =exp (1¢) T, T,

where ¢ is the dual “flux” through a unit cell, This “Hux”
has the value

¢ =2nf

where f is the filling fraction of bosons (Cooper pairs).
We will consider the case of rational filling fraction f =
p/q, where p, q are relatively prime integers.



Bosons on the square lattice at filling fraction f=p/g

[Tma H’v] =0
[Tya H“v} = (]

T, T, = exp (2mip/q) T, T,




Bosons on the square lattice at filling fraction f=p/g

1., H,] =0
[Ty? H’U} = ()

T, T, = exp (2mip/q) T, T,

Theorem:

The ground state of H, is at least ¢g-fold degenerate. We
can choose a basis, |/m) (m=0...(¢—1)), for the ground
states such that

T.m) = |m+1)
Tylm) = &*™"/4m)



Properties of a quantum-fluctuating vortex weakly pinned
by an impurity.

e Any impurity breaks translational invariance, and so chooses
a prefered orientation in vortex “flavor space”. This chooses
some linear combination among the ground states: |G) =

fn_=10 Cm|M)



Properties of a quantum-fluctuating vortex weakly pinned
by an impurity.

e Any impurity breaks translational invariance, and so chooses
a prefered orientation in vortex “flavor space”. This chooses
some linear combination among the ground states: |G) =

z;o Cm|M)

e The expectation value of any observable O, (G|O|G) can
be related to the matrix of overlaps (m|n) which, in turn,
are linearly related to quantities p,,, which transform un-
der T, T, like the Fourier components of a density pq at
the wavevectors Q = 27 f(m,n):

1, :pg — eiQ@pQ 1y pq — eiQ'@pQ
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Properties of a quantum-fluctuating vortex weakly pinned
by an impurity.

e Any impurity breaks translational invariance, and so chooses
a prefered orientation in vortex “flavor space”. This chooses
some linear combination among the ground states: |G) =

z;o Cm|M)

e The expectation value of any observable O, (G|O|G) can
be related to the matrix of overlaps (m|n) which, in turn,
are linearly related to quantities p,,, which transform un-
der T, T, like the Fourier components of a density pq at
the wavevectors Q = 27 f(m,n):

1, :pg — eiQ@pQ 1y pq — eiQ'@pQ

e It can be shown that there is no linear combination |G)
for which all the p,,, are zero.



Properties of a quantum-fluctuating vortex weakly pinned
by an impurity.

e Any pinned vortex exhibits modulations in “density” -
like observables at the wavevectors Q over the re-

gion in which the vortex executes its quantum zero-
point motion.




Vortex theory of the superfluid-insulator transition

As a superfluid approaches an insulating state, the
decrease 1n the strength of the condensate will
lower the energy cost of creating vortex-anti-

vortex pairs.




Vortex theory of the superfluid-insulator transition

Proliferation of vortex-anti-vortex pairs.




Vortex theory of the superfluid-insulator transition
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Proliferation of vortex-anti-vortex pairs.




Vortex theory of the superfluid-insulator transition
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Implication of vortex degeneracy for
superfluid-insulator transition

e Aharanov-Bohm or Berry phases lead to surpris-
ing kinematic duality relations between seemingly
distinct orders. These phase factors allow for con-

tinuous quantum phase transitions in situations
where such transitions are forbidden by Landau-
Ginzburg-Wilson theory.

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, 134510 (2001)
S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)
T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004).



Implication of vortex degeneracy for
superfluid-insulator transition

e Aharanov-Bohm or Berry phases lead to surpris-
ing kinematic duality relations between seemingly
distinct orders. These phase factors allow for con-
tinuous quantum phase transitions in situations
where such transitions are forbidden by Landau-
Ginzburg-Wilson theory.

Vortex zero point motion leads to a natural expla-
nation of STM experiments.

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, 134510 (2001)
S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)
T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004).



Vortex-induced LDOS of Bi,Sr,CaCu,0Og, s integrated
from 1meV to 12meV at 4K

Vortices have
halos with
LDOS

modulations at a
period = 4 lattice
spacings

Prediction of periodic LDOS
modulations near vortices:
K. Park and S. Sachdev, Phys.
Rev. B 64, 184510 (2001).

J. Hoffman et al., Science 295, 466 (2002).
G. Levy et al., Phys. Rev. Lett. 95, 257005 (2005).
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III. Influence of nodal quasiparticles on
vortex dynamics in a d-wave
superconductor

P. Nikolic



A single vortex in a d-wave superconductor

Consider a single vortex at position r,(7). After the Franz-
Tesanovic gauge transformation, this vortex appears as a 7w flux
tube to the fermionic quasiparticles. The low energy theory for the

vortex and the fermionic “Dirac” quasiparticles is then

S = /dzazdfrﬁfy“(ﬁu—iau)\ﬂ

+ additional terms from the “Doppler shift”

where
V x @ =md(r — (7))

First, we integrate out the Dirac fermions to obtain an effective

action for the vortex

Sr,(r)] = —Trin(v,(¢0, —a,))



A single vortex in a nodal d-wave superconductor

We obtained

My

S[rv(r)}:fgm(w)ﬁ[ 2+ il + CoT?o] | + ..




A single vortex in a nodal d-wave superconductor

We obtained

d o
S [ry(7)] :f—‘; 1y (W) [me + Cilwl’ + CoT?|w|| +...

A finite effective mass

mv N%z
F

where A~A 1s a high energy cutoff




A single vortex in a nodal d-wave superconductor

We obtained

dw My
Sr,(7)] = f—ﬂ |I',U(w)]2 [ + Oy |w|? + 02T2|w|} + ...

sub-Ohmic damping with

C = VE2 X (Universal function of \% )
F




A single vortex in a nodal d-wave superconductor

We obtained

dw My
Sr,(7)] = f—ﬂ |I',U(w)]2 [ + Oy |w|? + 02T2|w|} + ...

\

Bardeen-Stephen viscous drag with

C, =V X (Universal function of \% )
F



A single vortex in a nodal d-wave superconductor

We obtained

dw My
Sr,(7)] = f—ﬂ |I',U(w)]2 [ + Oy |w|? + 02T2|w|} + ...

\

Bardeen-Stephen viscous drag with

C, =V X (Universal function of \% )
F

Effect of nodal quasiparticles on vortex
dynamics 1s relatively innocuous.




Using as input (7) the size of the “checkerboard halo” in STM
as a measure of the zero-point motion radius of the vortex, and (i)
the forces between the vortices as determined from an estimate of

the superfluid stiffness,

we obtain as output an estimate of m, =~ 2 — 9m,. and the vor-

tex oscillation frequency w, ~ 2 — 7 meV.

Second, we consider the influence of the vortex motion on the nodal
quasiparticles. For this, we integrate out the vortex co-ordinates

to obtain the modification of the Dirac spectrum....



Influence of the quantum oscillating vortex on the LDOS

Resonant feature near the
vortex oscillation frequency

P. Nikolic, S. Sachdev, and L. Bartosch, cond-mat/0606001



Influence of the quantum oscillating vortex on the LDOS

o o’ =1 3.0 -
| ] A Regular
- 2.5 T ,
0.6 . | Vortex
i 2 A p— "“““‘A“‘A y:
0.5 % 0
0.4 % 1.5 -
a. g 1.0 °
= -
0
0. 0.5 -
Resonant feature near the .
0. vortex oscillation frequency g g ————

L) l L) L) l
-120 -80 -40 O 40 80 120
Sample Bias (mV)

I. Maggio-Aprile et al. Phys. Rev. Lett. 75, 2754 (1995)
S.H. Pan et al. Phys. Rev. Lett. 85, 1536 (2000).

P. Nikolic, S. Sachdev, and L. Bartosch, cond-mat/0606001



Conclusions

Evidence that vortices in the cuprate superconductors carry a “flavor”
Index which encodes the spatial modulations of a proximate
Insulator. Quantum zero point motion of the vortex provides a natural
explanation for LDOS modulations observed in STM experiments.

Size of modulation halo allows estimate of the inertial mass of a
vortex

Direct detection of vortex zero-point motion may be possible in
Inelastic neutron or light-scattering experiments

The quantum zero-point motion of the vortices influences the
spectrum of the electronic quasiparticles, in a manner consistent with
LDOS spectrum

“Aharanov-Bohm” or “Berry” phases lead to surprising kinematic
duality relations between seemingly distinct orders. These phase
factors allow for continuous guantum phase transitions in situations
where such transitions are forbidden by Landau-Ginzburg-Wilson
theory.




