# Paramagnon fractionalization theory of the cuprate pseudogap



Talk online: sachdev.physics.harvard.edu

- Quantum Simulation of Doped Hubbard Systems ITAMP, Harvard, Nov 15, 2022
  - Subir Sachdev





#### Ultracold fermionic atoms in optical lattices

#### **Microscopic evolution of doped Mott** insulators from polaronic metal to Fermi liquid

Joannis Koepsell, Dominik Bourgund, Pimonpan Sompet, Sarah Hirthe, Annabelle Bohrdt, Yao Wang, Fabian Grusdt, Eugene Demler, Guillaume Salomon, Christian Gross, Immanuel Bloch Science **374** (2021) 82

 $C_{0}^{c}(10^{-2})$ 2 0 -2 -4







• View the pseudogap metal as quantum state  $(FL^*)$ , which could be stable at T = 0 under suitable conditions.





- View the pseudogap metal as quantum state  $(FL^*)$ , which could be stable at T = 0 under suitable conditions.
- Start with a mean-field theory of FL\*, which yields a variational wavefunction.







- View the pseudogap metal as quantum state  $(FL^*)$ , which could be stable at T = 0 under suitable conditions.
- Start with a mean-field theory of FL\*, which yields a variational wavefunction.
- FL\* will serve as the 'parent' for the other regions in the phase diagram.









# I. Paramagnon fractionalization theory of the Hubbard model

## 2. Photoemission in the cuprates

# 3. Confinement transitions from the pseudogap metal







## Yahui Zhang

#### Alexander Nikolaenko

arXiv: 2001.09159 arXiv: 2103.05009 arXiv: 2006.01140 arXiv: 2111.13703



#### Maria Tikhanovskaya

Dirk Morr



#### Eric Mascot



$$H = -\sum_{i < j} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} \left( n_{i\uparrow} - \frac{1}{2} \right) \left( n_{i\downarrow} - \frac{1}{2} \right) - \mu \sum_{i} c_{i\sigma}^{\dagger} c_{i\sigma}$$

We use the operator equation (valid on each site i):

$$U\left(n_{\uparrow} - \frac{1}{2}\right)\left(n_{\downarrow} - \frac{1}{2}\right) = -\frac{2U}{3}S^2 + \frac{U}{4}$$

Then we decouple the interaction via

$$\exp\left(\frac{2U}{3}\sum_{i}\int d\tau S_{i}^{2}\right) = \int \mathcal{D}\Phi_{i}(\tau)\exp\left(-\sum_{i}\int d\tau \left[\frac{3}{8U}\Phi_{i}^{2}-\Phi_{i}\cdot c_{i\sigma}^{\dagger}\frac{\tau_{\sigma\sigma'}}{2}c_{i\sigma'}\right]\right)$$

This yields the 'Scalapino-Pines-Chubukov-Schmalian...' theory for a 'paramagnon quantum rotor'  $\Phi_i$  coupled to otherwise free fermions  $c_{i\sigma}$ .





$$\mathcal{H}_{\text{paramagnon}} = \sum_{\mathbf{p}} \varepsilon_{\mathbf{p}} c_{\mathbf{p}\sigma}^{\dagger} c_{\mathbf{p}\sigma} - \lambda \sum_{i} c_{i\sigma}^{\dagger} \frac{\tau_{\sigma}}{2}$$







$$\mathcal{H}_{\text{paramagnon}} = \sum_{\mathbf{p}} \varepsilon_{\mathbf{p}} c_{\mathbf{p}\sigma}^{\dagger} c_{\mathbf{p}\sigma} - \lambda \sum_{i} c_{i\sigma}^{\dagger} \frac{\tau_{\sigma}}{2}$$





















#### Paramagnon fractionalization theory of the Hubbard model



Hubbard model of hole density **1+**p





## Paramagnon fractionalization theory of the Hubbard model Hubbard model of hole density **1+**p Schrieffer-Wolff transformation at large $J_{\perp}$ yields $U \sim J_K^2/J_{\perp}$ $c_{\sigma}$ Ferromagnetic $\boldsymbol{S}_1$ Kondo $J_K$ $J_{\perp}$ $\boldsymbol{\Phi}_i = \frac{1}{\sqrt{3}} \left( \boldsymbol{S}_{2i} - \boldsymbol{S}_{1i} \right)$ $\mathcal{H}_{\text{paramagnon}} = \sum_{\mathbf{p}} \varepsilon_{\mathbf{p}} c_{\mathbf{p}\sigma}^{\dagger} c_{\mathbf{p}\sigma} + J_{K} \sum_{i} c_{i\sigma}^{\dagger} \frac{\tau_{\sigma\sigma'}}{2} c_{i\sigma'} \cdot S_{1i} - \widetilde{J}_{K} \sum_{i} c_{i\sigma}^{\dagger} \frac{\tau_{\sigma\sigma'}}{2} c_{i\sigma'} \cdot S_{2i} + \dots$













#### Paramagnon fractionalization theory of the Hubbard model Hubbard model of hole density 1+p Schrieffer-Wolff transformation at large $J_{\perp}$ yields $U \sim J_K^2/J_{\perp}$ $c_{\sigma}$ Ferromagnetic $S_1$ Kondo $J_K$



A FL<sup>\*</sup> state is realized when the antiferromagnetic Kondo coupling dominates over  $J_{\perp}$ , and the  $c_{\sigma}$  and  $S_1$  form a heavy Fermi liquid state (as found in the heavy fermion compounds) of hole density  $(1 + p) + 1 = 2 + p = p \mod 2!$ 





**7** S<sub>2</sub>



#### Paramagnon fractionalization theory of the Hubbard model Hubbard model of hole density 1+p Schrieffer-Wolff transformation at large $J_{\perp}$ yields $U \sim J_K^2/J_{\perp}$ $c_{\sigma}$ Ferromagnetic $S_1$



A FL<sup>\*</sup> state is realized when the antiferromagnetic Kondo coupling dominates over  $J_{\perp}$ , and the  $c_{\sigma}$  and  $S_1$  form a heavy Fermi liquid state (as found in the heavy fermion compounds) of hole density  $(1 + p) + 1 = 2 + p = p \mod 2!$ The  $S_2$  must form an 'odd' spin liquid which does not break translational symmetry, to obtain a metal with a non-Luttinger volume Fermi surface.

**7** S<sub>2</sub>





Kondo  $J_K$ 



Small Fermi surface. Size  $2 + p \cong p$ 







Small Fermi surface. Size  $2 + p \cong p$ 







Small Fermi surface. Size  $2 + p \cong p$ 







Small Fermi surface. Size  $2 + p \cong p$ 





Large Fermi surface. Size: 1 + p

Trivial insulator







Large Fermi surface of size 1 + p

 $|\mathrm{FL}\rangle = |\mathrm{Rung\ singlets\ of\ } S_1, S_2\rangle$  $\otimes |\mathrm{Slater\ determinant\ of\ } c
angle$ 





#### **Electron fractionalization**



#### **Electron fractionalization**



#### **Electron fractionalization**

Don't fractionalize the electron; fractionalize the paramagnon!







Don't fractionalize the electron; fractionalize the paramagnon!



## I. Paramagnon fractionalization theory of the Hubbard model



# 3. Confinement transitions from the pseudogap metal



#### FL\* in a one-band model



**FL\*:** Condensate B breaks gauge symmetries in first ancilla layer.

 $H = -\sum_{i,j} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + \sum_{i,j} t_{1,ij} f_{1i\sigma}^{\dagger} f_{1j\sigma} - \sum_{i,j} t_{ij} f_{1i\sigma}^{\dagger} f_{1j\sigma} + \sum_{i,j} t_{ij} f_{1i\sigma}^{\dagger} f_{1j\sigma} - \sum_{i,j} t_{ij} f_{1i\sigma}^{\dagger} f_{1j\sigma} + \sum_{i$ 

#### "Fermi arc" spectral functions



$$+\sum_{i} B\left(c_{i\sigma}^{\dagger}f_{1i\sigma} + f_{1i\sigma}^{\dagger}c_{\sigma}\right)$$

**Precursors:** Kai-Yu Yang, T. M. Rice, Fu-Chun Zhang, PRB **73**, 174501 (2006) Yang Qi, SS, PRB **81**, 115129 (2010) Eun-Gook Moon, SS, PRB 83, 224508 (2011)





#### Photoemission at small p



#### $Ca_{2-x}Na_{x}CuO_{2}Cl_{2}$ at x = 0.10



Kyle M. Shen, F. Ronning, D. H. Lu, F. Baumberger, N. J. C. Ingle, W. S. Lee, W. Meevasana, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, Z.-X. Shen, Science 307, 901 (2005)

#### Photoemission at small p



Z.-H. Pan, G. D. Gu, P. D. Johnson, H. Claus, D. G. Hinks, and T. E. Kidd, PRL 107, 047003 (2011).



Reconstructed Fermi Surface of Underdoped  $Bi_2Sr_2CaCu_2O_{8+\delta}$  Cuprate Superconductors, H.-B. Yang, J. D. Rameau,

![](_page_33_Figure_0.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

![](_page_33_Picture_3.jpeg)

## <u>FL\* in a</u> one-band model

# 0.25 0.0 $k_y(\pi)$

## ARPES on Bi2201

R.-H. He, M. Hashimoto, H. Karapetyan, J. D. Koralek, J. P. Hinton, J. P. Testaud, V. Nathan, Y. Yoshida, H. Yao, K. Tanaka, W. Meevasana, R. G. Moore, D. H. Lu, S. K. Mo, M. Ishikado, H. Eisaki, Z. Hussain, T. P. Devereaux, S. A. Kivelson, J. Orenstein, A. Kapitulnik, and Z.-X. Shen, Science **331**, 1579 (2011)

![](_page_33_Picture_8.jpeg)

![](_page_33_Picture_9.jpeg)

#### FL\* in a one-band model

![](_page_34_Figure_1.jpeg)

 $k_y$ **FL\*:** Condensate B breaks gauge symmetries in first ancilla layer.

$$H = -\sum_{i,j} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + \sum_{i,j} t_{1,ij} f_{1i\sigma}^{\dagger} f_{1j\sigma}$$

![](_page_34_Figure_4.jpeg)

Yang Qi, SS, PRB **81**, 115129 (2010) Eun-Gook Moon, SS, PRB 83, 224508 (2011)

![](_page_34_Picture_7.jpeg)

#### Dynamic consequences of the spin liquid

Small Fermi surface. Size  $2 + p \cong p$ 

Spin liquid

![](_page_35_Picture_3.jpeg)

The only singular gauge fluctuations are those in the spin liquid of the  $S_2$ . We can compute their influence on the electronic spectrum perturbatively in the exchange couplings in terms of the dynamic spin susceptibility  $\chi_{\rm sl}$ .

![](_page_35_Picture_5.jpeg)

![](_page_36_Figure_0.jpeg)

![](_page_36_Figure_1.jpeg)

(c,d) Theory with SYK spin liquid in  $\Psi_2$  layer. Similar EDC obtained by gapless  $\mathbb{Z}_2$  spin liquid

(e,f) Experiments on Bi2212 by S.-D. Chen, M. Hashimoto, Y. He, D. Song, K.-J. Xu, J.-F. He, T. P. Devereaux, H. Eisaki, D.-H. Lu, J. Zaanen, and Z.-X. Shen, Science **366**, 1099 (2019).

![](_page_36_Figure_4.jpeg)

![](_page_36_Figure_5.jpeg)

## I. Paramagnon fractionalization theory of the Hubbard model

## 2. Photoemission in the cuprates

# 3. Confinement transitions from the pseudogap metal

![](_page_37_Picture_3.jpeg)

![](_page_38_Picture_0.jpeg)

#### Alexander Nikolaenko

![](_page_38_Picture_3.jpeg)

![](_page_38_Picture_4.jpeg)

Henry Shackleton

![](_page_38_Picture_6.jpeg)

![](_page_38_Picture_8.jpeg)

## Jonas von Milczewski

Maine Christos

![](_page_38_Picture_11.jpeg)

Zhu-Xi Luo

![](_page_39_Figure_0.jpeg)

![](_page_40_Picture_0.jpeg)

#### Yahui Zhang

![](_page_40_Figure_2.jpeg)

![](_page_41_Picture_0.jpeg)

Yahui Zhang

![](_page_41_Picture_2.jpeg)

#### Aavishkar Patel

![](_page_41_Picture_4.jpeg)

Haoyu Guo

![](_page_41_Picture_6.jpeg)

llya Esterlis

![](_page_41_Picture_8.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

(A) Schwinger boson representation  $(S_{2i} = b_{i\alpha}^{\dagger} \sigma_{\alpha\beta} b_{i\beta})$  leads to spin liquid described by  $\mathbb{CP}^1$  field theory:  $N_f = 2$  relativistic complex scalars, Z, coupled to a U(1) gauge field.

![](_page_44_Figure_0.jpeg)

(A) Schwinger boson representation  $(S_{2i} = b_{i\alpha}^{\dagger} \sigma_{\alpha\beta} b_{i\beta})$  leads to spin liquid described by  $\mathbb{CP}^1$  field theory:  $N_f = 2$  relativistic complex scalars, Z, coupled to a U(1) gauge field. Confinement transition: Condensation of Z leads to  $(\pi, \pi)$  Néel order, or incommensurate spiral spin density waves.

## **Observation of small Fermi pockets protected** by clean $CuO_2$ sheets of a high- $T_c$ superconductor

So Kunisada<sup>1</sup>, Shunsuke Isono<sup>2</sup>, Yoshimitsu Kohama<sup>1,3</sup>, Shiro Sakai<sup>4</sup>, Cédric Bareille<sup>1</sup>, Shunsuke Sakuragi<sup>1</sup>, Ryo Noguchi<sup>1</sup>, Kifu Kurokawa<sup>1</sup>, Kenta Kuroda<sup>1</sup>, Yukiaki Ishida<sup>1</sup>, Shintaro Adachi<sup>5</sup>, Ryotaro Sekine<sup>2</sup>, Timur K. Kim<sup>6</sup>, Cephise Cacho<sup>6</sup>, Shik Shin<sup>1,7</sup>, Takami Tohyama<sup>8</sup>, Kazuyasu Tokiwa<sup>2</sup>\*, Takeshi Kondo<sup>1,3</sup>\*

![](_page_45_Figure_2.jpeg)

![](_page_45_Picture_3.jpeg)

Hole pockets in a metallic SDW state with Néel order at  $(\pi, \pi)$ .

#### Science **369**, 833 (2020).

![](_page_45_Figure_6.jpeg)

![](_page_45_Picture_7.jpeg)

![](_page_46_Figure_0.jpeg)

![](_page_46_Figure_1.jpeg)

Néel  $(\pi,\pi)$  SDW  $\checkmark$  $\neq 0$ 

![](_page_46_Figure_3.jpeg)

![](_page_46_Picture_4.jpeg)

![](_page_46_Picture_5.jpeg)

![](_page_47_Figure_0.jpeg)

![](_page_48_Figure_0.jpeg)

![](_page_49_Figure_0.jpeg)

(A) Schwinger boson representation  $(S_{2i} = b_{i\alpha}^{\dagger} \sigma_{\alpha\beta} b_{i\beta})$  leads to spin liquid described by  $\mathbb{CP}^1$  field theory:  $N_f = 2$  relativistic complex scalars, Z, coupled to a U(1) gauge field. Confinement transition: Condensation of Z leads to  $(\pi, \pi)$  Néel order, or incommensurate spiral spin density waves.

![](_page_50_Figure_0.jpeg)

(A) Schwinger boson representation  $(S_{2i} = b_{i\alpha}^{\dagger} \sigma_{\alpha\beta} b_{i\beta})$  leads to spin liquid described by  $\mathbb{CP}^1$  field theory:  $N_f = 2$  relativistic complex scalars, Z, coupled to a U(1) gauge field. Confinement transition: Condensation of Z leads to  $(\pi, \pi)$  Néel order, or incommensurate spiral spin density waves.

(B) Schwinger fermion representation  $(\mathbf{S}_{2i} = f_{2i\alpha}^{\dagger} \boldsymbol{\sigma}_{\alpha\beta} f_{2i\beta})$  and  $\pi$ -flux mean field theory leads to spin liquid described by a SU(2) gauge theory with  $N_f = 2$  massless Dirac fermions,  $\Psi$ .

![](_page_51_Figure_0.jpeg)

(A) Schwinger boson representation  $(S_{2i} = b_{i\alpha}^{\dagger} \sigma_{\alpha\beta} b_{i\beta})$  leads to spin liquid described by  $\mathbb{CP}^1$  field theory:  $N_f = 2$  relativistic complex scalars, Z, coupled to a U(1) gauge field. Confinement transition: Condensation of Z leads to  $(\pi, \pi)$  Néel order, or incommensurate spiral spin density waves.

(B) Schwinger fermion representation  $(S_{2i} = f_{2i\alpha}^{\dagger} \sigma_{\alpha\beta} f_{2i\beta})$  and  $\pi$ -flux mean field theory leads to spin liquid described by a SU(2) gauge theory with  $N_f = 2$  massless Dirac fermions,  $\Psi$ .

Bosonfermion duality

![](_page_51_Figure_6.jpeg)

![](_page_52_Figure_0.jpeg)

(A) Schwinger boson representation  $(S_{2i} = b_{i\alpha}^{\dagger} \sigma_{\alpha\beta} b_{i\beta})$  leads to spin liquid described by  $\mathbb{CP}^1$  field theory:  $N_f = 2$  relativistic Bosoncomplex scalars, Z, coupled to a U(1) gauge field. Confinement transition: Condensation of Z leads to  $(\pi, \pi)$  Néel fermion order, or incommensurate spiral spin density waves. duality

(B) Schwinger fermion representation  $(S_{2i} = f_{2i\alpha}^{\dagger} \sigma_{\alpha\beta} f_{2i\beta})$  and  $\pi$ -flux mean field theory leads to spin liquid described by a SU(2) gauge theory with  $N_f = 2$  massless Dirac fermions,  $\Psi$ .

There is now good evidence that the  $N_f = 2 \text{ SU}(2)$ -QCD CFT is not stable.

![](_page_52_Figure_6.jpeg)

![](_page_53_Figure_0.jpeg)

(A) Schwinger boson representation  $(S_{2i} = b_{i\alpha}^{\dagger} \sigma_{\alpha\beta} b_{i\beta})$  leads to spin liquid described by  $\mathbb{CP}^1$  field theory:  $N_f = 2$  relativistic complex scalars, Z, coupled to a U(1) gauge field. Confinement transition: Condensation of Z leads to  $(\pi, \pi)$  Néel order, or incommensurate spiral spin density waves.

(B) Schwinger fermion representation  $(S_{2i} = f_{2i\alpha}^{\dagger} \sigma_{\alpha\beta} f_{2i\beta})$  and  $\pi$ -flux mean field theory leads to spin liquid described by a SU(2) gauge theory with  $N_f = 2$  massless Dirac fermions,  $\Psi$ . Confinement transition: Condensation of  $\langle \Psi f_1 \rangle$ ,  $\langle \Psi f_1^{\dagger} \rangle$ , leads to d-wave superconductivity, charge density wave, pair density wave.

Bosonfermion duality

![](_page_53_Figure_6.jpeg)

![](_page_54_Figure_0.jpeg)

#### Summary

cuprate high temperature superconductors: magnon into 'ancilla qubits'. and anti-nodal regions.

• Paramagnon fractionalization theory of FL\* for the pseudogap metal of the

Don't fractionalize the mobile electron, but fractionalize the para-

Predicts electronic spectra in good agreement with observations in *both* nodal

#### Summary

- cuprate high temperature superconductors: Don't fractionalize the mobile electron, but fractionalize the paramagnon into 'ancilla qubits'. and anti-nodal regions.
- Outlook:
  - samples.
  - Theory for multi-point correlators in cold atom experiments.
  - dom couplings.

• Paramagnon fractionalization theory of FL\* for the pseudogap metal of the

Predicts electronic spectra in good agreement with observations in *both* nodal

- 'Back side' of hole pockets in FL\* phase may be observable in cleaner

- Theory for FL\*-FL transition leads to strange metal with spatially ran-

- Theory of quantum oscillations in underdoped cuprates at high fields.