## Quantum criticality in the cuprate superconductors



Talk online: sachdev.physics.harvard.edu



## The cuprate superconductors



Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi, S. Sachdev, and C. Xu, *Physical Review B* **78**, 045110 (2008).

Paired electron pockets in the underdoped cuprates, V. Galitski and S. Sachdev, *Physical Review B* **79**, 134512 (2009).

Competition between spin density wave order and superconductivity in the underdoped cuprates, Eun Gook Moon and S. Sachdev, arXiv:0905.2608



## <u>Outline</u>

I. Quantum criticality

Coupled dimer antiferromagnets vs. the cuprate superconductors

- 2. Fermi surfaces in the hole-doped cuprates Observations of quantum oscillations
- 3. Superconductivity
- 4. Competition between spin-density-wave order and superconductivity: phenomenological theory
- 5. Electronic theory of superconductivity and its competition with spin-density-wave order

Quantum criticality: coupled dimer antiferromagets vs. the cuprate supercondcutors

Square lattice antiferromagnet



Ground state has long-range Néel order

Order parameter is a single vector field  $\vec{\varphi} = \eta_i \vec{S}_i$  $\eta_i = \pm 1$  on two sublattices  $\langle \vec{\varphi} \rangle \neq 0$  in Néel state. <u>Square lattice antiferromagnet</u>





Weaken some bonds to induce spin entanglement in a new quantum phase Square lattice antiferromagnet



Ground state is a "quantum paramagnet" with spins locked in valence bond singlets







## The cuprate superconductors





R.A. Cooper, Y. Wang, B. Vignolle, O. J. Lipscombe, S. M. Hayden, Y. Tanabe, T. Adachi, Y. Koike, M. Nohara, H. Takagi, Cyril Proust, N. E. Hussey, *Science*, **323**, 603 (2009).

#### Crossovers in transport properties of hole-doped cuprates



N. E. Hussey, J. Phys: Condens. Matter 20, 123201 (2008)

#### Crossovers in transport properties of hole-doped cuprates



#### Only candidate quantum critical point observed at low T



# Fermi surfaces in the hole-doped cuprates

#### Evolution of the (ARPES) Fermi surface on the cuprate phase diagram



## Fermi surfaces in electron- and hole-doped cuprates



Effective Hamiltonian for quasiparticles:

$$H_0 = -\sum_{i < j} t_{ij} c_{i\alpha}^{\dagger} c_{i\alpha} \equiv \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}\alpha}$$

with  $t_{ij}$  non-zero for first, second and third neighbor, leads to satisfactory agreement with experiments. The area of the occupied electron states,  $\mathcal{A}_e$ , from Luttinger's theory is

$$\mathcal{A}_e = \begin{cases} 2\pi^2(1-p) & \text{for hole-doping } p\\ 2\pi^2(1+x) & \text{for electron-doping } x \end{cases}$$

The area of the occupied hole states,  $\mathcal{A}_h$ , which form a closed Fermi surface and so appear in quantum oscillation experiments is  $\mathcal{A}_h = 4\pi^2 - \mathcal{A}_e$ .

## Spin density wave theory

In the presence of spin density wave order,  $\vec{\varphi}$  at wavevector  $\mathbf{K} = (\pi, \pi)$ , we have an additional term which mixes electron states with momentum separated by  $\mathbf{K}$ 

$$H_{\rm sdw} = \vec{\varphi} \cdot \sum_{\mathbf{k},\alpha,\beta} c_{\mathbf{k},\alpha} \vec{\sigma}_{\alpha\beta} c_{\mathbf{k}+\mathbf{K},\beta}$$

where  $\vec{\sigma}$  are the Pauli matrices. The electron dispersions obtained by diagonalizing  $H_0 + H_{\rm sdw}$  for  $\vec{\varphi} \propto (0, 0, 1)$  are

$$E_{\mathbf{k}\pm} = \frac{\varepsilon_{\mathbf{k}} + \varepsilon_{\mathbf{k}+\mathbf{K}}}{2} \pm \sqrt{\left(\frac{\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{k}+\mathbf{K}}}{2}\right) + \varphi^2}$$

This leads to the Fermi surfaces shown in the following slides for hole doping.













## Quantum oscillations

Quantum oscillations and the Fermi surface in an underdoped high  $T_c$  superconductor (ortho-II ordered YBa<sub>2</sub>Cu<sub>3</sub>O<sub>6.5</sub>). The period corresponds to a carrier density  $\approx 0.076$ .



N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, *Nature* **447**, 565 (2007)





Luttinger relation:

Area of Fermi surface =  $4\pi^3$  (density of fermions)

## **Electron pockets in the Fermi surface of hole-doped** high-T<sub>c</sub> superconductors

David LeBoeuf<sup>1</sup>, Nicolas Doiron-Leyraud<sup>1</sup>, Julien Levallois<sup>2</sup>, R. Daou<sup>1</sup>, J.-B. Bonnemaison<sup>1</sup>, N. E. Hussey<sup>3</sup>, L. Balicas<sup>4</sup>, B. J. Ramshaw<sup>5</sup>, Ruixing Liang<sup>5,6</sup>, D. A. Bonn<sup>5,6</sup>, W. N. Hardy<sup>5,6</sup>, S. Adachi<sup>7</sup>, Cyril Proust<sup>2</sup> & Louis Taillefer<sup>1,6</sup>

Nature 450, 533 (2007)



## **Electron pockets in the Fermi surface of hole-doped** high-T<sub>c</sub> superconductors

David LeBoeuf<sup>1</sup>, Nicolas Doiron-Leyraud<sup>1</sup>, Julien Levallois<sup>2</sup>, R. Daou<sup>1</sup>, J.-B. Bonnemaison<sup>1</sup>, N. E. Hussey<sup>3</sup>, L. Balicas<sup>4</sup>, B. J. Ramshaw<sup>5</sup>, Ruixing Liang<sup>5,6</sup>, D. A. Bonn<sup>5,6</sup>, W. N. Hardy<sup>5,6</sup>, S. Adachi<sup>7</sup>, Cyril Proust<sup>2</sup> & Louis Taillefer<sup>1,6</sup>

Nature 450, 533 (2007)



## Superconductivity in hole-doped cuprates

#### Evolution of the (ARPES) Fermi surface on the cuprate phase diagram



#### Overdoped SC State: Momentum-dependent Pair Energy Gap $\Delta(k)$



Shen et alPRL 70, 3999 (1993)Ding et alPRB 549678 (1996)Mesot et alPRL 83840 (1999)



The SC energy gap  $\Delta(k)$  has four nodes.










Competition between SDW order and superconductivity: phenomenological theory

Write down a Landau-Ginzburg action for the quantum fluctuations of the SDW order  $(\vec{\varphi})$  and superconductivity  $(\psi)$ :

$$S = \int d^2 r d\tau \left[ \frac{1}{2} (\partial_\tau \vec{\varphi})^2 + \frac{c^2}{2} (\nabla_x \vec{\varphi})^2 + \frac{r}{2} \vec{\varphi}^2 + \frac{u}{4} (\vec{\varphi}^2)^2 + \kappa \vec{\varphi}^2 |\psi|^2 \right] \\ + \kappa \vec{\varphi}^2 |\psi|^2 \\ + \int d^2 r \left[ |(\nabla_x - i(2e/\hbar c)\mathcal{A})\psi|^2 - |\psi|^2 + \frac{|\psi|^4}{2} \right]$$

where  $\kappa > 0$  is the repulsion between the two order parameters, and  $\nabla \times \mathcal{A} = H$  is the applied magnetic field.

E. Demler, S. Sachdev and Y. Zhang, *Phys. Rev. Lett.* **87**, 067202 (2001). see also E. Demler, W. Hanke, and S.-C. Zhang, *Rev. Mod. Phys.* **76**, 909 (2004)

Write down a Landau-Ginzburg action for the quantum fluctuations of the SDW order  $(\vec{\varphi})$  and superconductivity  $(\psi)$ :

$$S = \int d^2 r d\tau \left[ \frac{1}{2} (\partial_\tau \vec{\varphi})^2 + \frac{c^2}{2} (\nabla_x \vec{\varphi})^2 + \frac{r}{2} \vec{\varphi}^2 + \frac{u}{4} (\vec{\varphi}^2)^2 + \frac{\kappa \vec{\varphi}^2 |\psi|^2}{2} \right] \\ + \int d^2 r \left[ |(\nabla_x - i(2e/\hbar c)\mathcal{A})\psi|^2 - |\psi|^2 + \frac{|\psi|^4}{2} \right]$$

where  $\kappa > 0$  is the repulsion between the two order parameters and  $\nabla \times \mathcal{A} = H$  is the applied magnetic field.

E. Demler, S. Sachdev and Y. Zhang, *Phys. Rev. Lett.* **87**, 067202 (2001). see also E. Demler, W. Hanke, and S.-C. Zhang, *Rev. Mod. Phys.* **76**, 909 (2004)

Write down a Landau-Ginzburg action for the quantum fluctuations of the SDW order  $(\vec{\varphi})$  and superconductivity  $(\psi)$ :

$$S = \int d^2 r d\tau \left[ \frac{1}{2} (\partial_\tau \vec{\varphi})^2 + \frac{c^2}{2} (\nabla_x \vec{\varphi})^2 + \frac{r}{2} \vec{\varphi}^2 + \frac{u}{4} (\vec{\varphi}^2)^2 + \kappa \vec{\varphi}^2 |\psi|^2 \right] + \int d^2 r \left[ (\nabla_x - i(2e/\hbar c)\mathcal{A})\psi|^2 - |\psi|^2 + \frac{|\psi|^4}{2} \right]$$

where  $\kappa > 0$  is the repulsion between the two order parameters, and  $\nabla \times \mathcal{A} = H$  is the applied magnetic field.

E. Demler, S. Sachdev and Y. Zhang, *Phys. Rev. Lett.* **87**, 067202 (2001). see also E. Demler, W. Hanke, and S.-C. Zhang, *Rev. Mod. Phys.* **76**, 909 (2004)









• For doping with  $x_s < x < x_m$ , SDW order appears at a quantum phase transition at  $H = H_{sdw} > 0$ .











D. Haug, V. Hinkov, A. Suchaneck, D. S. Inosov, N. B. Christensen, Ch. Niedermayer, P. Bourges, Y. Sidis, J. T. Park, A. Ivanov, C. T. Lin, J. Mesot, and B. Keimer, *arXiv*:0902.3335.



Electronic theory of superconductivity and its competition with spin-density wave order











Fermions at the *large* Fermi surface exchange fluctuations of the SDW order parameter  $\vec{\varphi}$ .

David Pines, Douglas Scalapino

# Pairing by SDW fluctuation exchange

We now allow the SDW field  $\vec{\varphi}$  to be dynamical, coupling to electrons as

$$H_{\rm sdw} = -\sum_{\mathbf{k},\mathbf{q},\alpha,\beta} \vec{\varphi}_{\mathbf{q}} \cdot c^{\dagger}_{\mathbf{k},\alpha} \vec{\sigma}_{\alpha\beta} c_{\mathbf{k}+\mathbf{K}+\mathbf{q},\beta}.$$

Exchange of a  $\vec{\varphi}$  quantum leads to the effective interaction

$$H_{ee} = -\frac{1}{2} \sum_{\mathbf{q}} \sum_{\mathbf{p},\gamma,\delta} \sum_{\mathbf{k},\alpha,\beta} V_{\alpha\beta,\gamma\delta}(\mathbf{q}) c^{\dagger}_{\mathbf{k},\alpha} c_{\mathbf{k}+\mathbf{q},\beta} c^{\dagger}_{\mathbf{p},\gamma} c_{\mathbf{p}-\mathbf{q},\delta},$$

where the pairing interaction is

$$V_{\alpha\beta,\gamma\delta}(\mathbf{q}) = \vec{\sigma}_{\alpha\beta} \cdot \vec{\sigma}_{\gamma\delta} \frac{\chi_0}{\xi^{-2} + (\mathbf{q} - \mathbf{K})^2},$$

with  $\chi_0 \xi^2$  the SDW susceptibility and  $\xi$  the SDW correlation length.

## *d*-wave pairing of the large Fermi surface



 $\langle c_{\mathbf{k}\uparrow}c_{-\mathbf{k}\downarrow}\rangle \propto \Delta_{\mathbf{k}} = \Delta_0(\cos(k_x) - \cos(k_y))$ 



Ar. Abanov, A.V. Chubukov and J. Schmalian, Advances in Physics 52, 119 (2003).



- $T_c$  increases upon approaching the SDW transition. SDW and SC orders do not compete, but attract each other.
- No simple mechanism for nodal-anti-nodal dichotomy.

Ar. Abanov, A.V. Chubukov and J. Schmalian, Advances in Physics 52, 119 (2003).







### Fermi pockets in hole-doped cuprates



Begin with SDW ordered state, and focus on fluctuations in the *orientation* of  $\vec{\varphi}$ , by using a unit-length bosonic spinor  $z_{\alpha}$ 

$$\vec{\varphi} = z_{\alpha}^* \vec{\sigma}_{\alpha\beta} z_{\beta}$$



# Charge carriers in the lightly-doped cuprates with Neel order



For a spacetime dependent SDW order,  $\vec{\varphi} = z_{\alpha}^* \vec{\sigma}_{\alpha\beta} z_{\beta}$ ,

$$\begin{pmatrix} c_{1\uparrow} \\ c_{1\downarrow} \end{pmatrix} = \mathcal{R}_z \begin{pmatrix} g_+ \\ g_- \end{pmatrix} ; \quad \mathcal{R}_z \equiv \begin{pmatrix} z_{\uparrow} & -z_{\downarrow}^* \\ z_{\downarrow} & z_{\uparrow}^* \end{pmatrix}.$$

So  $g_{\pm}$  are the "up/down" electron operators in a rotating reference frame defined by the local SDW order



For a spacetime dependent SDW order,  $\vec{\varphi} = z_{\alpha}^* \vec{\sigma}_{\alpha\beta} z_{\beta}$ ,

$$\begin{pmatrix} c_{2\uparrow} \\ c_{2\downarrow} \end{pmatrix} = \mathcal{R}_z \begin{pmatrix} g_+ \\ -g_- \end{pmatrix} ; \quad \mathcal{R}_z \equiv \begin{pmatrix} z_{\uparrow} & -z_{\downarrow}^* \\ z_{\downarrow} & z_{\uparrow}^* \end{pmatrix}.$$

Same SU(2) matrix also rotates electrons in second pocket.

Low energy theory for spinless, charge -e fermions  $g_{\pm}$ , and spinful, charge 0 bosons  $z_{\alpha}$ :

$$\mathcal{L} = \mathcal{L}_{z} + \mathcal{L}_{g}$$
  
$$\mathcal{L}_{z} = \frac{1}{t} \Big[ |(\partial_{\tau} - iA_{\tau})z_{\alpha}|^{2} + v^{2}|\nabla - i\mathbf{A})z_{\alpha}|^{2} + i\lambda(|z_{\alpha}|^{2} - 1) \Big]$$
  
+ Berry phases of monopoles in  $A_{\mu}$ .

CP<sup>1</sup> field theory for  $z_{\alpha}$  and an emergent U(1) gauge field  $A_{\mu}$ . Coupling t tunes the strength of SDW orientation fluctuations.

$$\mathcal{L}_{g} = g_{+}^{\dagger} \left[ (\partial_{\tau} - iA_{\tau}) - \frac{1}{2m^{*}} (\nabla - i\mathbf{A})^{2} - \mu \right] g_{+}$$
$$+ g_{-}^{\dagger} \left[ (\partial_{\tau} + iA_{\tau}) - \frac{1}{2m^{*}} (\nabla + i\mathbf{A})^{2} - \mu \right] g_{-}$$

Two Fermi surfaces coupled to the emergent U(1) gauge field  $A_{\mu}$  with opposite charges



• Weak *p*-wave pairing of  $f_{\pm v}$ .

# Conclusions

#### Crossovers in transport properties of hole-doped cuprates



N. E. Hussey, J. Phys: Condens. Matter 20, 123201 (2008)
#### Crossovers in transport properties of hole-doped cuprates



## Only candidate quantum critical point observed at low T











# **Conclusions**

- \* Gauge theory for pairing in the underdoped cuprates, describing "angular" fluctuations of spin-density-wave order
- Natural route to d-wave pairing with strong pairing at the antinodes and weak pairing at the nodes
- \* Explains characteristic "competing order" features of fielddoping phase diagram: SDW order is more stable in the metal than in the superconductor.