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Quantum phase transitions

Quantum 
entanglement



The double slit experiment

Interference of electrons

Principles of Quantum Mechanics: 1. Quantum Superposition

TWO$
SLITS$ Unlike water waves, electrons arrive one-

by-one (so is an electron a particle ?)



The double slit experiment

Interference of electrons

But if an 
electron is 

like a 
particle, 

which slit 
does each 

electron pass 
through ?

Principles of Quantum Mechanics: 1. Quantum Superposition



Let |L� represent the state
with the electron in the left slit
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Actual state of each electron is

|Li + |Ri



Quantum Entanglement: quantum superposition 
with more than one particle
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Hydrogen atom:
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Hydrogen atom:

=
1⌃
2

(|⇥⇤⌅ � |⇤⇥⌅)

Hydrogen molecule:

= _
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Quantum Entanglement: quantum superposition 
with more than one particle
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Einstein-Podolsky-Rosen “paradox” (1935):  
Measurement of one particle instantaneously 

determines the state of the other particle 
arbitrarily far away
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Ordinary metals

Ordinary metals are shiny, and they conduct heat and 
electricity efficiently. Each atom donates electrons which 

are delocalized throughout the entire crystal



Almost all many-electron systems are described by the 
quasiparticle concept: a quasiparticle is an “excited 
lump” in the many-electron state which responds just 
like an ordinary particle. 

R.D. Mattuck



Almost all many-electron systems are described by the 
quasiparticle concept: a quasiparticle is an “excited 
lump” in the many-electron state which responds just 
like an ordinary particle. 

Quasiparticles eventually collide with each other. 
Such collisions eventually leads to thermal 
equilibration in a chaotic quantum state, but the 
equilibration takes a long time. 



YBa2Cu3O6+x

High temperature 
superconductors



Julian Hetel and Nandini Trivedi, Ohio State University

Nd-Fe-B magnets, YBaCuO superconductor
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Figure: K. Fujita and J. C. Seamus Davisp (hole/Cu)

Strange metal
Entangled 

electrons lead to 
“strange” 

temperature 
dependence of 
resistivity and 

other properties

Quantum matter without quasiparticles



“Strange”,

“Bad”,

or “Incoherent”,

metal has a resistivity, ⇢, which obeys

⇢ ⇠ T ,

and

⇢ � h/e2

(in two dimensions),

where h/e2 is the quantum unit of resistance.



The Sachdev-Ye-Kitaev (SYK) model

Pick a set of random positions



Place electrons randomly on some sites

The Sachdev-Ye-Kitaev (SYK) model



Entangle electrons pairwise randomly
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Entangle electrons pairwise randomly

The Sachdev-Ye-Kitaev (SYK) model



The SYK model has “nothing but entanglement”

The Sachdev-Ye-Kitaev (SYK) model



This describes both a strange metal and a black hole!

The Sachdev-Ye-Kitaev (SYK) model



Building a metal
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Prominent systems like the high-Tc cuprates and heavy fermions display intriguing features going beyond
the quasiparticle description. The Sachdev-Ye-Kitaev(SYK) model describes a 0 + 1D quantum cluster with
random all-to-all four-fermion interactions among N Fermion modes which becomes exactly solvable as N !
1, exhibiting a zero-dimensional non-Fermi liquid with emergent conformal symmetry and complete absence
of quasi-particles. Here we study a lattice of complex-fermion SYK dots with random inter-site quadratic
hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a
heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature
Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in
temperature resistivity in the incoherent regime, and a Lorentz ratio L ⌘ ⇢T varies between two universal values
as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated
metal.

Introduction - Strongly correlated metals comprise an en-
during puzzle at the heart of condensed matter physics. Com-
monly a highly renormalized heavy Fermi liquid occurs be-
low a small coherence scale, while at higher temperatures a
broad incoherent regime pertains in which quasi-particle de-
scription fails[1–9]. Despite the ubiquity of this phenomenol-
ogy, strong correlations and quantum fluctuations make it
challenging to study. The exactly soluble SYK models pro-
vide a powerful framework to study such physics. The most-
studied SYK4 model, a 0 + 1D quantum cluster of N Ma-
jorana fermion modes with random all-to-all four-fermion
interactions[10–18] has been generalized to SYKq models
with q-fermion interactions. Subsequent works[19, 20] ex-
tended the SYK model to higher spatial dimensions by cou-
pling a lattice of SYK4 quantum clusters by additional four-
fermion “pair hopping” interactions. They obtained electrical
and thermal conductivities completely governed by di↵usive
modes and nearly temperature-independent behavior owing to
the identical scaling of the inter-dot and intra-dot couplings.

Here, we take one step closer to realism by considering a
lattice of complex-fermion SYK clusters with SYK4 intra-
cluster interaction of strength U0 and random inter-cluster
“SYK2” two-fermion hopping of strength t0[21–26]. Un-
like the previous higher dimensional SYK models where lo-
cal quantum criticality governs the entire low temperature
physics, here as we vary the temperature, two distinctive
metallic behaviors appear, resembling the previously men-
tioned heavy fermion systems. We assume t0 ⌧ U0, which
implies strong interactions, and focus on the correlated regime
T ⌧ U0. We show the system has a coherence temperature

scale Ec ⌘ t2
0/U0[21, 27, 28] between a heavy Fermi liquid

and an incoherent metal. For T < Ec, the SYK2 induces a
Fermi liquid, which is however highly renormalized by the
strong interactions. For T > Ec, the system enters the incoher-
ent metal regime and the resistivity ⇢ depends linearly on tem-
perature. These results are strikingly similar to those of Par-
collet and Georges[29], who studied a variant SYK model ob-
tained in a double limit of infinite dimension and large N. Our
model is simpler, and does not require infinite dimensions. We
also obtain further results on the thermal conductivity , en-
tropy density and Lorentz ratio[30, 31] in this crossover. This
work bridges traditional Fermi liquid theory and the hydrody-
namical description of an incoherent metallic system.

SYK model and Imaginary-time formulation - We consider
a d-dimensional array of quantum dots, each with N species
of fermions labeled by i, j, k · · · ,

H =
X

x

X

i< j,k<l

Ui jkl,xc†ixc†jxckxclx +
X

hxx0i

X

i, j

ti j,xx0c
†
i,xc j,x0 (1)

where Ui jkl,x = U⇤kli j,x and ti j,xx0 = t⇤ji,x0x are random zero mean
complex variables drawn from Gaussian distribution whose
variances |Ui jkl,x|2 = 2U2

0/N
3 and |ti j,x,x0 |2 = t2

0/N.
In the imaginary time formalism, one studies the partition

function Z = Tr e��(H�µN), with N = Pi,x c†i,xci,x, written as
a path integral over Grassman fields cix⌧, c̄ix⌧. Owing to the
self-averaging established for the SYK model at large N, it is
su�cient to study Z̄ =

R
[dc̄][dc]e�S c , with (repeated species

indices are summed over)

S c =
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i
. (2)

The basic features can be determined by a simple power- counting. Considering for simplicity µ = 0, starting from

Ut

A strongly correlated metal built from Sachdev-Ye-Kitaev models
Xue-Yang Song, Chao-Ming Jian, and L. Balents, arXiv:1705.00117

See also A. Georges and O. Parcollet PRB 59, 5341 (1999)
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The density-density correlator is expressed as

DRn(x,t; x0,t0) ⌘ i✓(t � t0)h[N(x,t),N(x0,t0)]i
=

i
2
hNc(x,t)Nq(x0,t0)i, (10)

where Ns ⌘ N�S '
�'̇s

, Nc/q = N+ ± N�(keeping momentum-
independent components- See Sec.B). Adding a contact term
to ensure that limp!0 DRn(p,! , 0) = 0[31], the action (9)
yields the di↵usive form [32]

DRn(p,!) =
�iNK!

i! � D'p2 + NK =
�NKD'p2

i! � D'p2 . (11)

From this we identify NK and D' as the compressibility and
charge di↵usion constant, respectively. The electric conduc-
tivity is given by Einstein relation � ⌘ 1/⇢ = NKD', or,
restoring all units,� = NKD' e2

~ a2�d(a is lattice spacing).
Note the proportionality to N: in the standard non-linear
sigma model formulation, the dimensionless conductance is
large, suppressing localization e↵ects. This occurs because
both U and t interactions scatter between all orbitals, destroy-
ing interference from closed loops.

The analysis of energy transport proceeds similarly. Since
energy is the generator of time translations, one considers the
time-reparametrization (TRP) modes induced by ts ! ts+✏s(t)
and defines ✏c/q = 1

2 (✏+ ± ✏�). The e↵ective action for TRP
modes to the lowest-order in p,! reads (Sec. B)

iS ✏ =
X

p

Z +1

�1
d! ✏c,!(2i�!2T 2 � p2⇤3(!))✏q,�! + · · · , (12)

where the ellipses has the same meaning as in (9). At low
frequency, the correlation function integral, given in Sec. B,
behaves as ⇤3(!) ⇡ 2�D✏T 2!, which defines the energy dif-
fusion constant D✏ . This identification is seen from the corre-
lator for energy density modes "c/q ⌘ iN�S ✏

�✏̇c/q
,

DR"(p,!) =
i
2
h"c"qip,! = �NT 2�D✏ p2

i! � D✏ p2 , (13)

where we add a contact term to ensure conservation of energy
at p = 0. The thermal conductivity reads  = NT�D✏ (kB = 1)
–like �, is O(N).

Scaling collapse, Kadowaki-Woods and Lorentz ra-
tios – Electric/thermal conductivities are obtained from
lim!!0 ⇤2/3(!)/!, expressed as integrals of real-time corre-
lation functions, and can be evaluated numerically for any
T, t0,U0. Introducing generalized resistivities, ⇢' = ⇢, ⇢" =
T/, we find remarkably that for t0,T ⌧ U0, they collapse to
universal functions of one variable,

⇢⇣(t0,T ⌧ U0) =
1
N

R⇣( T
Ec

) ⇣ 2 {', "}, (14)

where R'(T ), R"(T ) are dimensionless universal functions.
This scaling collapse is verified by direct numerical calcula-
tions shown in Fig. 3a. From the scaling form (B2), we see the
low temperature resistivity obeys the usual Fermi liquid form

⇢⇣(T ⌧ Ec) ⇡ ⇢⇣(0) + A⇣T 2, (15)

(a)

(b)

FIG. 3. (a): For t0,T ⌧ U0, ⇢'/" “collapse” to R'/"( T
Ec

)/N. (b): The
Lorentz ratio ⇢

T reaches two constants ⇡2

3 ,
⇡2

8 , in the two regimes.
The solid curves are guides to the eyes.

where the temperature coe�cient of resistivity A⇣ =
R00⇣ (0)
2NE2

c
is

large due to small coherence scale in denominator, charac-
teristic of a strongly correlated Fermi liquid. Famously, the
Kadowaki-Woods ratio, A'/(N�)2, is approximately system-
independent for a wide range of correlated materials[33, 34].
We find here A'

(N�)2 =
R00' (0)

2[S0(0)]2N3 is independent of t0 and U0!
Turning now to the incoherent metal regime, in limit of

large arguments, T � 1, the generalized resistivities vary lin-
early with temperature: R⇣(T ) ⇠ c⇣ T . We analytically obtain
c' = 2p

⇡
and c" = 16

⇡5/2 (Supplementary Information), implying
that the Lorenz number, characterizing the Wiedemann-Franz
law, takes the unusual value L = 

�T ! ⇡2

8 for Ec ⌧ T ⌧ U0.
More generally, the scaling form (B2) implies that L is a uni-
versal function of T/Ec, verified numerically as shown in
Fig. 3b. The Lorenz number increases with lower tempera-
ture, saturating at T ⌧ Ec to the Fermi liquid value ⇡2/3.

Conclusion – We have shown that the SYK model pro-
vides a soluble source of strong local interactions which,
when coupled into a higher-dimensional lattice by ordinary
but random electron hopping, reproduces a remarkable num-

For Ec < T < U , the

resistivity, ⇢, and
entropy density, s, are

⇢ ⇠ h

e2

✓
T

Ec

◆
, s = s0

A strongly correlated metal built from Sachdev-Ye-Kitaev models
Xue-Yang Song, Chao-Ming Jian, and L. Balents, arXiv:1705.00117

See also A. Georges and O. Parcollet PRB 59, 5341 (1999)

Low ‘coherence’ scale

Ec ⇠
t2

U



The complex quantum entanglement in the strange 
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Quantum matter without quasiparticles

Thermal equilibration into a chaotic

quantum state happens very rapidly

in systems without quasiparticle

excitations: it happens in a

shortest possible time of order

~
kBT

(SS 1999, Maldacena, Shenker, Stanford 2015)
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Horizon radius R =
2GM

c2

Objects so dense that light is 
gravitationally bound to them.

Black Holes

In Einstein’s theory, the 
region inside the black hole 
horizon is disconnected from 

the rest of the universe.



On September 14, 2015, LIGO detected the merger of 
two black holes, each weighing about 30 solar masses, 
with radii of about 100 km, 1.3 billion light years away

0.1 seconds later !



LIGO
September 14, 2015

• The ring-down is predicted by General Relativity to happen in a

time

8⇡GM

c3
⇠ 8 milliseconds. Curiously this happens to equal

~
kBTH

: so the ring down can also be viewed as the approach of a

quantum system to thermal equilibrium at the fastest possible rate.



Around 1974, Bekenstein and Hawking 
showed that the application of the 

quantum theory across a black hole 
horizon led to  many astonishing 

conclusions 

Black Holes + Quantum theory
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Quantum Entanglement across a black hole horizon
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Quantum Entanglement across a black hole horizon

There is long-range quantum 
entanglement between the inside 

and outside of a black hole



Black hole 
horizon

Quantum Entanglement across a black hole horizon

Hawking used this to show that 
black hole horizons have an 
entropy and a temperature

(because to an outside observer, the state of the 
electron inside the black hole is an unknown)
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LIGO
September 14, 2015

• The ring-down is predicted by General Relativity to happen in a

time

8⇡GM

c3
⇠ 8 milliseconds. Curiously this happens to equal

~
kBTH

: so the ring down can also be viewed as the approach of a

quantum system to thermal equilibrium at the fastest possible rate.!
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Black 
holes

The SYK model is both a 
strange metal and a black hole!
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SYK and black holes



⇣
~x

SYK and black holes

The SYK model has “dual” description

in which an extra spatial dimension, ⇣, emerges.

The curvature of this “emergent” spacetime is described

by Einstein’s theory of general relativity

Black hole
horizon



⇣
~x

SYK and black holes

Black hole
horizon

An extra spatial 
dimension emerges from 
quantum entanglement!

SS 2010; A. Kitaev, 2015



depth of
entanglement

D-dimensional
space

Tensor network of 
hierarchical entanglement

~x

⇣



String theory near 
a “D-brane”

depth of
entanglement

D-dimensional
space

Emergent spatial direction
of SYK model or string theory

~x

⇣



String theory near 
a “D-brane”

depth of
entanglement

D-dimensional
space

Emergent spatial direction
of SYK model or string theory

~x

⇣ Quantum entanglement
leads to an emergent 

spatial dimension
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• No quasiparticle

decomposition of low-lying states.

• Thermalization and many-body chaos

in the shortest possible time of or-

der ~/(kBT ).

• These are also characteristics of black

holes in quantum gravity.

Quantum matter without quasiparticles:
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