Strange metals and black holes

Homi Bhabha Memorial Public Lecture Indian Institute of Science Education and Research, Pune November 14, 2017

Subir Sachdev

Talk online: sachdev.physics.harvard.edu

PHYSICS

Quantum entanglement

The double slit experiment

TWO SLITS

Unlike water waves, electrons arrive oneby-one (so is an electron a particle ?)

Interference of electrons

The double slit experiment

But if an electron is like a particle, which slit does each electron pass through ?

Interference of electrons

The double slit experiment

Let $|L\rangle$ represent the state with the electron in the left slit

The double slit experiment

Let $|L\rangle$ represent the state with the electron in the left slit

And $|R\rangle$ represents the state with the electron in the right slit

The double slit experiment

Let $|L\rangle$ represent the state with the electron in the left slit

And $|R\rangle$ represents the state with the electron in the right slit

Actual state of each electron is $|L\rangle + |R\rangle$

Hydrogen atom:

Hydrogen atom:

Hydrogen molecule:

> Einstein-Podolsky-Rosen "paradox" (1935): Measurement of one particle instantaneously determines the state of the other particle arbitrarily far away

Quantum entanglement

Quantum entanglement

Ordinary metals are shiny, and they conduct heat and electricity efficiently. Each atom donates electrons which are delocalized throughout the entire crystal Almost all many-electron systems are described by the quasiparticle concept: a quasiparticle is an "excited lump" in the many-electron state which responds just like an ordinary particle.

Almost all many-electron systems are described by the quasiparticle concept: a quasiparticle is an "excited lump" in the many-electron state which responds just like an ordinary particle.

Quasiparticles eventually collide with each other. Such collisions eventually leads to thermal equilibration in a chaotic quantum state, but the equilibration takes a long time.

 $YBa_2Cu_3O_{6+x}$

Nd-Fe-B magnets, YBaCuO superconductor

Julian Hetel and Nandini Trivedi, Ohio State University

Quantum matter without quasiparticles

200 150 SM г(К DW T_c 100 AF 50 SC + DW SC 0.05 0.20 0.25 0.10 0.15 0 p (hole/Cu)

Entangled electrons lead to "strange" temperature dependence of resistivity and other properties

Strange metal

Figure: K. Fujita and J. C. Seamus Davis

 $\rho \sim T,$

and

 $\rho \gg h/e^2$

(in two dimensions), where h/e^2 is the quantum unit of resistance.

Pick a set of random positions

Place electrons randomly on some sites

The SYK model has "nothing but entanglement"

This describes both a strange metal and a black hole!

A strongly correlated metal built from Sachdev-Ye-Kitaev models Xue-Yang Song, Chao-Ming Jian, and L. Balents, arXiv:1705.00117 See also A. Georges and O. Parcollet PRB **59**, 5341 (1999)

cluster of N Maalso obtain further result)-all four-fermion tropy density and Lorentz •work bridges traditional F to SYK_q models vorks 201 exnamical description of an mensions by cou-SYK model and Imagin y additional foura dimensional array of obtained electrical of fermions labeled by i, erned by diffusive behavior owing to $\Delta I = \nabla \nabla$ **T T**

A strongly correlated metal built from Sachdev-Ye-Kitaev models Xue-Yang Song, Chao-Ming Jian, and L. Balents, arXiv:1705.00117 See also A. Georges and O. Parcollet PRB **59**, 5341 (1999)

Quantum matter without quasiparticles

The complex quantum entanglement in the strange metal does not allow for any quasiparticle excitations.

<u>Quantum matter without quasiparticles</u>

The complex quantum entanglement in the strange metal does not allow for any quasiparticle excitations.

Thermal equilibration into a chaotic quantum state happens very rapidly in systems without quasiparticle excitations: it happens in a

shortest possible time of order $\frac{n}{k_{\rm P}T}$

(SS 1999, Maldacena, Shenker, Stanford 2015)

Quantum

entanglement

Black Holes

Objects so dense that light is gravitationally bound to them.

In Einstein's theory, the region inside the black hole horizon is disconnected from the rest of the universe.

Horizon radius $R = \frac{2GM}{c^2}$

On September 14, 2015, LIGO detected the merger of two black holes, each weighing about 30 solar masses, with radii of about 100 km, 1.3 billion light years away

• The ring-down is predicted by General Relativity to happen in a time $\frac{8\pi GM}{c^3} \sim 8$ milliseconds.

Around 1974, Bekenstein and Hawking showed that the application of the quantum theory across a black hole horizon led to many astonishing conclusions

There is long-range quantum entanglement between the inside and outside of a black hole

Hawking used this to show that black hole horizons have an entropy and a temperature (because to an outside observer, the state of the electron inside the black hole is an unknown)

• The ring-down is predicted by General Relativity to happen in a time $\frac{8\pi GM}{c^3} \sim 8$ milliseconds.

• The ring-down is predicted by General Relativity to happen in a time $\frac{8\pi GM}{c^3} \sim 8$ milliseconds. Curiously this happens to equal $\frac{\hbar}{k_B T_H}$ so the ring down can also be viewed as the approach of a quantum system to thermal equilibrium at the fastest possible rate! Quantum

entanglement

Black holes

Strange metals

SYK and black holes

SYK and black holes

The SYK model has "dual" description in which an extra spatial dimension, ζ , emerges. The curvature of this "emergent" spacetime is described by Einstein's theory of general relativity

SYK and black holes

Quantum matter without quasiparticles:

- No quasiparticle decomposition of low-lying states.
- Thermalization and many-body chaos in the shortest possible time of order $\hbar/(k_B T)$.

Quantum matter without quasiparticles:

- No quasiparticle decomposition of low-lying states.
- Thermalization and many-body chaos in the shortest possible time of order $\hbar/(k_B T)$.
- These are also characteristics of black holes in quantum gravity.