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Z2 lattice gauge theory (Wegner, 1971)
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Topological order
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degenerate states with

Z2 flux W = ±1 through

the holes of the torus

(N. Read and S.S., 1991)
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Embed in a compact U(1) gauge theory

Define

⌧z ⇠ eiA

and impose A = 0,⇡ by adding a potential ⇠ � cos(2A). Then make a gauge
transformation Aµ ! Aµ��µ✓/2, and make ✓ dynamical to make the Hamil-
tonian gauge invariant. In this manner the Z2 gauge theory becomes a compact
U(1) gauge theory with a charge 2 Higgs field:
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Now we take the naive continuum limit with the Higgs field � ⇠ ei✓, and
obtain a theory of complex scalar � coupled to a U(1) gauge field

L = |(@µ � 2iAµ)�|2 + s|�|2 + u|�|4 + 1

2e2
(✏µ⌫�@⌫A�)

2

However, this turns continuum theory out to be incorrect: we cannot ignore the
monopoles is the compact U(1) gauge field, Aµ near the confinement transition.

E. Fradkin and S. Shenker, Phys Rev D 19, 3682 (1979)



Particle-vortex duality

But we proceed anyway, and perform a Dasgupta-Halperin-Peskin particle-
vortex duality on L. This requires a complex scalar � which creates a vortex
with flux ⇡, and the dual theory is

eL = |@µ�|2 + es|�|2 + eu|�|4 .

Now we have to impose the requirement that vortices with flux ⇡ and flux �⇡
are the same i.e. allow 2⇡ monopoles to be created from the vacuum. This
modifies the Lagrangian to

eL = |@µ�|2 + es|�|2 + eu|�|4 � �(�2 + (�⇤)2) .

Finally, we write � = �+ i#. The field � has a smaller mass then #, and so we
can integrated out # to obtain the final correct dual theory

eL = (@µ�)
2 + es�2 + eu�4 .

This is the promised dual Ising⇤ theory of the confinement-deconfinement tran-
sition. The � field creates the ‘vison’ particle. The ⇤ refers to the fact that
a single vison cannot be created locally, and this changes some topological
properties on compact spaces.
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Symmetry-enriched topological (SET) order
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Berry phases suppress monopoles at the critical point

Embedding the Z2 gauge theory in a compact U(1) gauge theory as before, the
Gi = �1 background charges lead to a source term for A⌧ (a Polyakov loop)
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Performing the Dasgupta-Halperin duality transform directly on this lattice
model with the source term, we now find a dual vortex theory in which only
quadrupled monopoles are permitted.

eL = |@µ�|2 + es|�|2 + eu|�|4 � �4(�
8 + (�⇤)8) .

The �4 coupling is known to be irrelevant at the (Wilson-Fisher) critical point,
and so monopoles can be ignored in the critical theory! Undualizing back to
the original theory, this means that it is now valid to take the naive continuum
limit of L to obtain the deconfined critical theory with a U(1) gauge field

L = |(@µ � 2iAµ)�|2 + s|�|2 + u|�|4 + 1

2e2
(✏µ⌫�@⌫A�)

2 .
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Fig. 8. Schematic renormalization group flows for the S = 1/2 square lattice quantum antiferro-

magnet Hs in Eq. (3.1). The theory Zdeconfined in Eq. (3.2) describes only the line λ4 = 0 (with

s ∼ (g−gc)): it is therefore a theory for the transition between the Néel state and a U(1) spin liquid

with a gapless ‘photon’. However, the lattice antiferromagnet always has a non-zero bare value of

the monopole fugacity λ4 (the monopoles are quadrupled by the Berry phases, as reviewed else-

where10). The λ4 perturbation is irrelevant at the g = gc critical point of Zdeconfined: this critical

point therefore also described the transition in the lattice antiferromagnet. However, the g → ∞

U(1) spin liquid fixed point is unstable to λ4, and the paramagnet is therefore a gapped VBS state.

In the earlier discussion5, 19, 21 of such flows for large N SU(N) quantum antiferromagnets, the

monopoles were found to be irrelevant at the critical point with or without Berry phases, while

for N = 2, Berry phases are required to render the monopoles irrelevant at criticality. It was this

crucial distinction between large and small N which ultimately prevented a complete picture from

emerging from the early large N studies.5, 19, 21

of free photons. Finally at the longest length scales ξV BS ≪ R, VBS order is established and

the photon is destroyed.

The continuum theory Zdeconfined has a strongly-coupled critical point, and the remarks

made in Section 2 for the critical field theory of Sϕ can be extended to the present situa-

tion. The za quasiparticles are not well defined at the critical point, and characterized instead

by their own anomalous dimension. Indeed, the critical theory of Zdeconfined may be under-

stood by the usual renormalized perturbative analysis1 but applied to a theory of nearly free,

fractionalized za quanta. It is instructive to compute the leading order prediction for the

exponent η in Eq. (1.4) in such an approach. At tree level, the za propagator is 1/p2 (p is

a spacetime 3-momentum); the χϕ susceptibility, by Eq. (3.3), involves the convolution of 2

such propagators, and so we obtain

χϕ(p) ∼

∫

d3p1

p2
1(p + p1)2

∼
1

|p|
(3.5)

Comparing with Eq. (1.4), this simple computation yields a large anomalous dimension η = 1.

This illustrates our claimed secondary characteristic of deconfined critical points: the possi-
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Deconfined quantum criticality
with a SU(2) gauge theory

and a critical SO(3) Higgs scalar
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