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Superfluid-insulator transition

a Superflud state

Ultracold ®“Rb

atoms - bosons

M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, Nature 415, 39 (2002).
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The Superfluid-Insulator transition

Boson Hubbard model

Degrees of freedom: Bosons, b;, hopping between the

sites, j, of a lattice, with short-range repulsive interactions.

U
H = _t;b;bj_“znj +?Enj(nj _1)+...
Yy J J

n; Eb;bj

b, bl] = &

M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
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Insulator (the vacuum)
at large repulsion between bosons
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Excitations of the insulator:

Particles ~y |
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Excitations of the insulator:

Holes ~ 1
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Excitations of the insulator:

Particles ~ '

Holes ~ 1

Density of particles = density of holes =
“relativistic” field theory for :

S= [ drar [10-9 + 1T + (g - g WP + 1o

M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).

Monday, January 9, 2012



(v) # 0 (1)) = 0

Superfluid Insulator
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CFT3 at 7>0

Quantum
\ critical ,
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Quantum critical transport

Quantum “nearly perfect flurd”
with shortest possible
equilibration time, 7

where C 1s a universal constant

S. Sachdev, Quantum Phase Transitions, Cambridge (1999).
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Quantum critical transport

Transport co-oefficients not determined
by collision rate, but by
universal constants of nature

Conductivity

2

0=~ X |Universal constant O(1) |

(Q is the “charge” of one boson)

M.P.A. Fisher, G. Grinstein, and S.M. Girvin, Phys. Rev. Lett. 64, 587 (1990)
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
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Quantum critical transport

Transport co-oefficients not determined
by collision rate, but by
universal constants of nature

Momentum transport
N V1SCOS1ty

entropy density

h
— k_ X |Universal constant O(1) |
B

P. Kovtun, D. T. Son, and A. Starinets, Phys. Rev. Lett. 94, 11601 (2005)
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Quantum critical transport

Describe charge transport using Boltzmann theory of in-

teracting bosons:

dv v
| = F
dt 7.

This gives a frequency (w) dependent conductivity

go

U(w) B l—rwT

where 7. ~ h/(kgT) is the time between boson collisions.
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Quantum critical transport

Describe charge transport using Boltzmann theory of in-

teracting bosons:

dv v
| = F
dt 7.

This gives a frequency (w) dependent conductivity

go

U(w) B l—rwT

where 7. ~ h/(kgT) is the time between boson collisions.

Also, we have o(w — 00) = 0, associated with the den-

sity of states for particle-hole creation (the “optical con-
ductivity”) in the CFTS3.
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Boltzmann theory of bosons
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So far, we have described the quantum critical point using
the boson particle and hole excitations of the insulator.

() # 0 () =0

Superfluid Insulator

s
e g
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However, we could equally well describe the conductivity
using the excitations of the superfluid, which are vortices.

(W) # 0 / () =0

Superfluid Insulator

s
e g
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However, we could equally well describe the conductivity
using the excitations of the superfluid, which are vortices.

These are quantum particles (in 241 dimensions) which
described by a (mirror/e.m.) “dual” CFT3 with an emer-
gent U(1) gauge field. Their T > 0 dynamics can also be
described by a Boltzmann equation:

Conductivity = Resistivity of vortices

() # 0 () =0

Superfluid Insulator

o>
. g
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Boltzmann theory of bosons
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Boltzmann theory of vortices

Relo(w)]

«—1/7.

1/0’(}0
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Boltzmann theory of bosons
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Vector large N expansion for CFT 3

2 huw . .
g = —Y > — a universal function

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997). k B I
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AdS/CFT correspondence
AdS4-Schwarzschild black-brane

S:/d4x\/jg — (R:
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AdS/CFT correspondence
AdS4-Schwarzschild black-brane

A 2+1

dimensional

system at 1ts
quantum

critical point

o= frnralis(n0 )
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AdS/CFT correspondence
AdS4-Schwarzschild black-brane

A 2+1
dimensional

system at 1ts
quantum
critical point

Black-brane at
temperature of

2+1 dimensional S = /d4:13\/—g — <R | >

quantum critical

system
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AdS/CFT correspondence
AdS4-Schwarzschild black-brane

A 2+1
dimensional
system at 1ts

quantum
critical point

Black-brane at Fom s e e A e e e e -
temperature of : Friction of quantum

2+1 dimensional i criticality = waves

uantum critical
1 fallmg into black brane :
System ................................. L
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AdS4 theory of “nearly perfect fluids™

To leading order in a gradient expansion, charge transport in
an infinite set of strongly-interacting CFT'3s can be described by
Einstein-Maxwell gravity /electrodynamics on AdS4-Schwarzschild

! -
Fa Fab
12"

SEM :/d4$\/—g

C. P. Herzog, P. K. Kovtun, S. Sachdev, and D. T. Son,
Phys. Rev. D 75, 085020 (2007).
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AdS4 theory of “nearly perfect fluids™

To leading order in a gradient expansion, charge transport in
an infinite set of strongly-interacting CFT'3s can be described by
Einstein-Maxwell gravity /electrodynamics on AdS4-Schwarzschild

We include all possible 4-derivative terms: after suitable field

redefinitions, the required theory has only one dimensionless
constant v (L is the radius of AdS,):

SEM :/d4a:\/—g

where C\p.q 1s the Weyl curvature tensor.
Stability and causality constraints restrict |y| < 1/12.

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of strongly interacting “perfect fluids

9

% W
OO : : : * ‘ * 1 1 ! 1 x x x 1 1 1
0.0 0.5 1.0 1.5 AT

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of strongly interacting “perfect fluids”

e The v > 0 result has similarities to
the quantum-Boltzmann result for
transport of particle-like excitations

% W
OO | ‘ ‘ | | ‘ | | w | | | | | | |
0.0 0.5 1.0 1.5 AT

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of strongly interacting “perfect fluids”

1.5 -

1
h ‘S 12
@O'
1.0 y =4
e The v < 0 result can be interpreted
05 - as the transport of vortex-like
* excltations
00 . P
0.0 0.5 1.0 15 AT

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of strongly interacting “perfect fluids”

1.5 -

0.5 - I'he v = 0 case is the exact result for the large N limit

of SU(N) gauge theory with N' = 8 supersymmetry (the
ABJM model). The w-independence is a consequence of
self-duality under particle-vortex duality (S-duality).

% W
OO | ‘ ‘ | | ‘ | | w | | | | | | |
0.0 0.5 1.0 1.5 AT

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of strongly interacting “perfect fluids”

e Stability constraints on the effective
theory (|v| < 1/12) allow only a lim-
ited w-dependence in the conductivity

0.0 W
0.0 0.5 1.0 15 AT

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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