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Square lattice antiferromagnet
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Examine ground state as a function of λ
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At large    ground state is a “quantum paramagnet” with 
spins locked in valence bond singlets
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Square lattice antiferromagnet

Nearest-neighor spins are “entangled” with each other.
Can be separated into an Einstein-Podolsky-Rosen (EPR) pair.
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Square lattice antiferromagnet

H =
�

�ij�

Jij
�Si · �Sj

J

J/λ

For λ ≈ 1, the ground state has antiferromagnetic (“Néel”) order,
and the spins align in a checkerboard pattern
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Square lattice antiferromagnet

H =
�
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Jij
�Si · �Sj

J

J/λ

For λ ≈ 1, the ground state has antiferromagnetic (“Néel”) order,
and the spins align in a checkerboard pattern

No EPR pairs
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Pressure in TlCuCl3
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A. Oosawa, K. Kakurai, T. Osakabe, M. Nakamura, M. Takeda, and H. Tanaka, 
Journal of the Physical Society of Japan, 73,  1446 (2004).
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TlCuCl3

An insulator whose spin susceptibility vanishes 
exponentially as the temperature T tends to zero.
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TlCuCl3

Quantum paramagnet at 
ambient pressure
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TlCuCl3

Neel order under pressure
A. Oosawa, K. Kakurai, T. Osakabe, M. Nakamura, M. Takeda, and H. Tanaka, 
Journal of the Physical Society of Japan, 73,  1446 (2004).
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Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, 
Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, 

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)

Excitations of TlCuCl3 with varying pressure

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

1.2

Pressure [kbar]

En
er

gy
 [m

eV
]

Monday, January 23, 2012



Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, 
Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, 

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)
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Excitations of TlCuCl3 with varying pressure

Broken valence bond
excitations of the

quantum paramagnet
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Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, 
Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, 

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)
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Excitations of TlCuCl3 with varying pressure

Spin waves above
the Néel state
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Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, 
Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, 

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)
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Excitations of TlCuCl3 with varying pressure

“Higgs” particle appears at theoretically predicted energy

Longitudinal excitations

–similar to the Higgs boson

First observation of the Higgs !

S. Sachdev, arXiv:0901.4103
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Quantum critical point with non-local 
entanglement in spin wavefunction
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depth of
entanglement

D-dimensional
space

Tensor network representation of entanglement
  at quantum critical point
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• Long-range entanglement

• Long distance and low energy correlations near the
quantum critical point are described by a quantum
field theory which is relativistically invariant (where
the spin-wave velocity plays the role of the velocity
of “light”).

• The quantum field theory is invariant under scale and
conformal transformations at the quantum critical
point: a CFT3

Characteristics of 
  quantum critical point
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• Allows unification of the standard model of particle
physics with gravity.

• Low-lying string modes correspond to gauge fields,
gravitons, quarks . . .

String theory
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• A D-brane is a D-dimensional surface on which strings can end.

• The low-energy theory on a D-brane is an ordinary quantum
field theory with no gravity.

• In D = 2, we obtain strongly-interacting CFT3s. These are
“dual” to string theory on anti-de Sitter space: AdS4.
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• A D-brane is a D-dimensional surface on which strings can end.

• The low-energy theory on a D-brane is an ordinary quantum
field theory with no gravity.

• In D = 2, we obtain strongly-interacting CFT3s. These are
“dual” to string theory on anti-de Sitter space: AdS4.

CFTD+1
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depth of
entanglement

D-dimensional
space

Tensor network representation of entanglement
  at quantum critical point

M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007)
F.  Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, Phys. Rev. Lett. 96, 220601 (2006)
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String theory near 
a D-brane

depth of
entanglement

D-dimensional
space

Emergent direction
of AdS4
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depth of
entanglement

D-dimensional
space

Tensor network representation of entanglement
  at quantum critical point

Emergent direction
of AdS4 Brian Swingle, arXiv:0905.1317
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ρA = TrBρ = density matrix of region A

Entanglement entropy SEE = −Tr (ρA ln ρA)

B

A

Entanglement entropy
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depth of
entanglement

D-dimensional
space

Entanglement entropy

A
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depth of
entanglement

D-dimensional
space

Entanglement entropy

A

Draw a surface which intersects the minimal number of links

Emergent direction
of AdS4
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The entanglement entropy of a region A on the boundary 
equals the minimal area of a surface in the higher-dimensional 

space whose boundary co-incides with that of A.

This can be seen both the string and tensor-network pictures

Entanglement entropy

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).
Brian Swingle, arXiv:0905.1317
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J. McGreevy, arXiv0909.0518

r

AdSd+2

CFTd+1

Rd,1

Minkowski

Emergent holographic direction

Quantum 
matter with
long-range 

entanglement
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Quantum 
matter with
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AdSd+2

CFTd+1

Rd,1

Minkowski

Emergent holographic direction

Quantum 
matter with
long-range 

entanglement

AArea 
measures

entanglement
entropy
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J. McGreevy, arXiv0909.0518

Why AdSd+2 ?
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For a relativistic CFT in d spatial dimensions, the
metric in the holographic space is uniquely fixed
by demanding the following scale transformaion
(i = 1 . . . d)

xi → ζxi , t → ζt , ds → ds

This gives the unique metric

ds2 =
1

r2
�
−dt2 + dr2 + dx2

i

�

Reparametrization invariance in r has been used
to the prefactor of dx2

i equal to 1/r2. This fixes
r → ζr under the scale transformation. This is
the metric of the space AdSd+2.

Why AdSd+2 ?
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Quantum critical point with non-local 
entanglement in spin wavefunction

=
1√
2

����↑↓
�
−

��� ↓↑
��

Monday, January 23, 2012



Classical
spin

waves

Dilute
triplon

gas

Quantum
critical

Neel order
Pressure in TlCuCl3

S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).
A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919 (1994).
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Classical
spin

waves

Dilute
triplon

gas

Quantum
critical

Neel order
Pressure in TlCuCl3

S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).
A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919 (1994).

Short-range 
entanglement

Short-range 
entanglement
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Classical
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Quantum
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Classical
spin

waves

Dilute
triplon

gas

Quantum
critical

Neel order
Pressure in TlCuCl3

S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).
A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919 (1994).

Excitations of a ground state 
with long-range entanglement
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A 2+1 
dimensional 
system at its 

quantum 
critical point

AdS4-Schwarzschild black-brane

AdS/CFT correspondence at non-zero temperatures
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Black-brane at 
temperature of 
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quantum critical 
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AdS4-Schwarzschild black-brane

AdS/CFT correspondence at non-zero temperatures
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A 2+1 
dimensional 
system at its 

quantum 
critical point

Black-brane at 
temperature of 

2+1 dimensional 
quantum critical 

system

AdS4-Schwarzschild black-brane

AdS/CFT correspondence at non-zero temperatures

Friction of quantum 
criticality = waves 

falling into black brane 
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A 2+1 
dimensional 
system at its 

quantum 
critical point

Black-brane at 
temperature of 

2+1 dimensional 
quantum critical 

system

AdS4-Schwarzschild black-brane

AdS/CFT correspondence at non-zero temperatures

Provides successful description 
of many properties of quantum 

critical points at non-zero 
temperatures
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• Consider an infinite, continuum,

translationally-invariant quantum system with a glob-

ally conserved U(1) chargeQ (the “electron density”)

in spatial dimension d > 1.

• Describe zero temperature phases where d�Q�/dµ �=
0, where µ (the “chemical potential”) which changes

the Hamiltonian, H, to H − µQ.

• Compressible systems must be gapless.

• Conformal quantum matter is compressible in

d = 1, but not for d > 1.

Compressible quantum matter
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The only compressible phase of traditional 
condensed matter physics which does not 
break the translational or U(1) symmetries 

is the Landau Fermi liquid 

Monday, January 23, 2012



Graphene

Conformal quantum matter
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Compressible quantum matter

Fermi Liquid 
with a 

Fermi surface

Monday, January 23, 2012



• The only low energy excitations are long-lived quasiparticles
near the Fermi surface.

Fermi Liquid 
with a 

Fermi surface

Compressible quantum matter
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• Luttinger relation: The total “volume (area)” A enclosed
by the Fermi surface is equal to �Q�.

A

Fermi Liquid 
with a 

Fermi surface

Compressible quantum matter
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The cuprate superconductors

Davis
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Hole-
doped

Electron-
doped

Electron-doped cuprate superconductors
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Hole-
doped

Electron-
doped

Superconductor
Bose condensate of pairs of electrons

Short-range entanglement

Electron-doped cuprate superconductors
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Hole-
doped

Electron-
doped

Resistivity
∼ ρ0 +ATn

Electron-doped cuprate superconductors

Figure prepared by K. Jin and and R. L. Greene
based on N. P. Fournier, P. Armitage, and

R. L. Greene, Rev. Mod. Phys. 82, 2421 (2010).

AF
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with long-range entanglement
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TSDW 
Tc

 

T0 

2.0 

0 

!"

1.0 SDW 

Superconductivity 

BaFe2(As1-xPx)2 

Temperature-doping phase diagram of  the 
iron pnictides: 

Resistivity
∼ ρ0 +ATα

S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, 
H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, 

Physical Review B 81, 184519 (2010)

AF
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The simplest example of 
an exotic compressible phase 

(a “strange metal”) 
is realized by 

fermions with a Fermi surface 
coupled to an Abelian 

or non-Abelian gauge field. 
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The theory of this strange metal is strongly coupled 
in two spatial dimensions, and the traditional field-

theoretic expansion methods break down.

S.-S. Lee, Phys. Rev. B 80, 165102 (2009)
M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

The simplest example of 
an exotic compressible phase 

(a “strange metal”) 
is realized by 

fermions with a Fermi surface 
coupled to an Abelian 

or non-Abelian gauge field. 
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Study the large N limit of a SU(N) 
gauge field coupled to 

adjoint (matrix) fermions at 
a non-zero chemical potential 
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J. McGreevy, arXiv0909.0518

Holography of non-Fermi liquids

Monday, January 23, 2012



Consider the following (most) general metric for the
holographic theory

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

This metric transforms under rescaling as

xi → ζ xi

t → ζz t

ds → ζθ/d ds.

This identifies z as the dynamic critical exponent (z = 1
for “relativistic” quantum critical points).

What is θ ? (θ = 0 for “relativistic” quantum criti-
cal points).

Holography of non-Fermi liquids
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At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the

thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the

“area” of the horizon, and so S ∼ r−d
h

r
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r

At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the

thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the

“area” of the horizon, and so S ∼ r−d
h

Under rescaling r → ζ(d−θ)/dr, and the
temperature T ∼ t−1, and so

S ∼ T (d−θ)/z

So θ is the “violation of hyperscaling” exponent.
Monday, January 23, 2012



A non-Fermi liquid has gapless fermionic
excitations on the Fermi surface, which
disperse in the single transverse direction
with dynamic critical exponent z. So we
expect compressible quantum states to have
an effective dimension d− θ with

θ = d− 1

Holography of non-Fermi liquids

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

L. Huijse, S. Sachdev, B. Swingle, arXiv:1112.0573
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Logarithmic violation of “area law”: SEE =
1

12
(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

B

A

Entanglement entropy of Fermi surfaces

D. Gioev and I. Klich, Physical Review Letters 96, 100503 (2006)
B. Swingle,  Physical Review Letters 105, 050502 (2010)
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Logarithmic violation of “area law”: SEE =
1

12
(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

B

A

Entanglement entropy of Fermi surfaces

Y.  Zhang, T. Grover,  and A. Vishwanath, Physical Review Letters 107, 067202 (2011)
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Holography of non-Fermi liquids

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

• The entanglement entropy exhibits logarithmic vio-
lation of the area law only for this value of θ !

• The co-efficient of the logarithmic term is consistent
with the Luttinger relation.

• Many other features of the holographic theory are
consistent with a boundary theory which has “hid-
den” Fermi surfaces of gauge-charged fermions.

θ = d− 1
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Holography of non-Fermi liquids

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2
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�

• The entanglement entropy exhibits logarithmic vio-
lation of the area law only for this value of θ !
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Conclusions

Phases of matter with long-range 
quantum entanglement are 

prominent in numerous modern 
materials.
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Conclusions

Simplest examples of long-range 
entanglement are at 

quantum-critical points of insulating 
antiferromagnets
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Conclusions

More complex examples in metallic 
states are experimentally 

ubiquitous, but pose difficult 
strong-coupling problems to 
conventional methods of field 

theory
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String theory and holography offer 
a remarkable new approach to 

describing states with long-range 
quantum entanglement.
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holographic description of “strange metals”
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