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Precision Measurement of the Node

(V,TT) T | L
s ofiged g, -
£ 30f 1 i
(7,0) ST QCP .

Gé.)- 20 _-(I?ji)_iiope near the node ; ]
- 10} @@ Laser N
0 B B Synch

©

o Ok -

| | P
0.10 0.15 0.20
hole concentration p

S
w b —
£ ) /
g - N -
- \ “l' -
- ¢ £ uD55 [
i UD65
+ | | b | | |H | | | | |5 | | | | |
O 15 30 45 60 75 0 15 30 45 60 75 O 15 30 45 60 75 90
0 (°) 0 (°) 0 (°) 0 (°)

l. M.Vishik, M. Hashimoto, Rui-Hua He,Wei-Sheng Lee, Felix Schmitt, Donghui Lu, R. G. Moore,
C. Zhang,W. Meevasana, T. Sasagawa, S. Uchida, Kazuhiro Fujita, S. Ishida, M. Ishikado, Yoshiyuki Yoshida,
Hiroshi Eisaki, Zahid Hussain, Thomas P. Devereaux, and Zhi-Xun Shen, PNAS 109, 18332 (2012)




Hole doped cuprates
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Hole doped cuprates

The remarkable underlying ground states of cuprate superconductors
Cyril Proust and Louis Taillefer, arXiv:1807.0507
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Two “gaps” for p < 0.19 (T~ 86 K)
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One gap for p > 0.19 (Tc ~ 81 K)
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Hidden magnetism at the pseudogap critical point of a high
temperature superconductor

Mehdi Frachet!t, Igor Vinograd!t, Rui Zhoul2, Siham Benhabib?, Shangfei Wul, Hadrien
Mayaffrel, Steffen Kramerl, Sanath K. Ramakrishna3, Arneil P. Reyes3, Jéerome Debray#,
Tohru Kurosawa>, Naoki Momono®, Migaku Oda>, Seiki Komiya?, Shimpei Ono?,
Masafumi Horio8, Johan Chang®, Cyril Proust!, David LeBoeuf!®, Marc-Henri Julien!®

80 T.. at .
pseudogap e 80T arXiv:1909.10258
@ 60T
& 30T Quasi-static magnetism in the pseudogap
60 v 18T state of La2-xSrxCuQO4. Temperature —

doping phase diagram representing Tmin, the

temperature of the minimum in the sound
velocity, at different fields. Since
superconductivity precludes the observation
of Tmin 1n zero-field, the dashed line (brown

area) represents the extrapolated T min(B=0).
While not exactly equal to the freezing
temperature 7t (see Fig. 2), Tmin 1s closely
tied to 71 and so is expected to have the same

doping dependence, including a peak around
p =0.12 1n zero/low fields (ref. 2). Onset

P* 0.20  temperatures of charge order are from ref. 33
(squares) and 35 (hexagons).
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Momentum-space view at large p |
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(Momentum-space view at large p)
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Questions and Answers

Is there a sharp quantum phase transition at p = p. between
the p and 1 + p carrier density regimes?

Yes

Does the sharp QPT survive in the presence ot disorder? Yes

If there is a broken symmetry for p < p., is the QPT de-
scribed by a Landau-Ginzburg-Wilson-Hertz-Millis theory of  No
a fluctuating order parameter damped by Fermi surface ex-
citations?

Or is the QPT described by a deconfined quantum critical
point with fractionalization and emergent gauge fields?

Yes

Are fractionalization and emergent gauge fields present for

p < p. with or without disorder? Maybe

Can there be a DQCP in a random system without fraction-
alization or broken symmetry in the p < p. state? i.e. an
‘unnecessary’ critical theory?
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t-| model

- I
H = ti'C]cL Cioy ngzg
\/NZ J Tra] N Z J J

i j=1 i<j=1

We consider the hole-doped case, with no double occupancy. Each
site has 3 states which we map to the ‘superspin’ space of a boson
b (the holon) and a fermion f, (the spinon):

0) = bty o) = £ o)
Co = [ b
= 1
S = §f§40aﬁfﬁ
fifo+blp = 1
U(1) gauge invariance, b— be'®,  f,— f,e'®

r -
The physical electron (c,) and spin (S) operators are rotations in

this SU(1|2) superspin space.
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t—j model
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7.] 1 7,<j 1

We consider the hole-doped case, with no double occupancy. Each
site has 3 states which we map to the ‘superspin’ space of a boson
b (the holon) and a fermion f, (the spinon):

0y =T lo) . €l ]0) = 6] |v)
co = b,f
S = %bl%ﬁbﬁ
blb, +11f = 1
U(1) gauge invariance, f— fe'?, b, — b,e'?

r

The physical electron (¢,) and spin (S) operators are rotations in

Lthis SU(2|1) superspin space.
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tjrnodel

Z Lij zacjoz | Z Jm

7.] 1 7,<j 1

We consider the hole-doped case, with no double occupancy. Each
site has 3 states which we map to the ‘superspin’ space of a boson
b (the holon) and a fermion f, (the spinon):

0) = §" [v) , cl |0) = bl |v)
c, = b f
© T % (su(if2) = su(n)
S = —b’f I 0apbs
blby +§1f = 1
U(1) gauge invariance, f— fe'?, b, — b,e'?

( )

The physical electron (¢,) and spin (S) operators are rotations in
Lthis SU(2|1) superspin space.
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t-] model phase diagram
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t-] model phase diagram

(SU(2/1) theory]

Metallic
spin glass.
Condense spinon b,
f carrier density p

i |v)

Deconfined
quantum
critical
point

<§z(7') : §Z(O)> ~ constant

(SU(1]2) theory]

Disordered
Fermi liquid.
Condense holon b,
fo carrier density 1+ p

1 |
' v

i) flv)

Zeroth order, p. = 1/3
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Insulating | model
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Insulating | model
z / DS(7)5(52 — 1)e~55-57

Sp = /du/dTS (8—S><8—S)
ou

drdr'Q(r — 7)S(7) - S(').

Sy =

S.Sachdev and J.Ye, PRL 70, 3339 (1993)



Insulating | model
z / DS(1)5(52 — 1)e=S5—S

s /du/w (6’_58_5)
ou

Sy

drdr'Q(r — 7)S(7) - S(7').

From this action we compute

Qr—) = {556

3 Z

and then impose the self-consistency condition

Q) =Q(r).)

S.Sachdev and |.Ye, PRL 70, 3339 (1993)




Insulating | model: RG

We assume a power-law decay

1
Q(T) ™~ ‘T‘d_l .

Ignore the self-consistency condition for now. We decouple the S (1) -
S(0) interaction by introducing a bosonic (¢4, a = 1...3) bath.

M.Vojta, C. Buragohain, and S. Sachdev, PRB 61, 15152 (2000)
S. Sachdeyv, Physica C 357,78 (2001)
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Insulating | model: RG

We assume a power-law decay

Schwinger fermions

1
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Insulating | model: RG

We assume a power-law decay

Schwinger bosons

1
Q(T) ™~ ’T‘d_l .

Ignore the self-consistency condition for now. We decouple the S(7) -

S(0) interaction by introducing a bosonic (¢4, a = 1...3) bath. Then
the problem reduces to the Hamiltonian

a

o/ 1
Hip = 0075200 6,(0) + 5 [ d% [x2 + (0:60)]

where 7, is canonically conjugate to the field ¢, ¢,(0) = ¢,(x = 0),
and we have the constraint

We identify Q(7) with temporal correlator of ¢,(0), and it can be ver-
ified that this correlator decays as above.

M.Vojta, C. Buragohain, and S. Sachdev, PRB 61, 15152 (2000)
S. Sachdeyv, Physica C 357,78 (2001)



Insulating | model: RG

We can perform a RG analysis in a € = 3—d expansion, while imposing
the fermion constraint ezxactly. The two-loop 8 function is

€

BY) = 27 +7° =7+ ..

This has a stable fixed point at v*% = ¢/2 +¢€?/4 + .. ..

M.Vojta, C. Buragohain, and S. Sachdev, PRB 61, 15152 (2000)
S. Sachdeyv, Physica C 357,78 (2001)
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The scaling dimension of the spin operator is dim|S]
to all orders in €. This implies the correlator

€/2, exact
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Insulating | model: RG

We can perform a RG analysis in a € = 3—d expansion, while imposing
the fermion constraint ezxactly. The two-loop 8 function is

€

BY) = 27 +7° =7+ ..

This has a stable fixed point at v*% = ¢/2 +¢€?/4 + .. ..

—

The scaling dimension of the spin operator is dim|S]
to all orders in €. This implies the correlator

€/2, exact

Q) =3 (S 50)) ~ =

Finally, we impose the self-consistency condition Q(7) = Q(7), and
obtain the same self-consistent result as in the large M expansion

(5(r)-5(0)) ~

M.Vojta, C. Buragohain, and S. Sachdev, PRB 61, 15152 (2000)
S. Sachdeyv, Physica C 357,78 (2001)



Insulating | model: large M limit

Express the spin operator in terms of fermions S = (1/2) fi, 3f3,
and let o =1... M. The fermions obey the constraint

M
M
O;fifa — 7

In the large M limit we obtain for the fermion Green’s func-
tion G and self energy > (same as the SYK equations)

1
iw — 2(iw)

Giw) = N(1) = —J*G?*(1)G(—7)

The solution is

G(7) ~ ng(;) | <§(T) - §(0)> L

S.Sachdev and |.Ye, PRL 70, 3339 (1993)



Insulating | model

1 L

Numerical studies for SU(2) spin-1/2 show spin-glass order!

L.Arrachea and M. |. Rozenberg, PRB 65, 224430 (2002)
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- I
H = ti'C]cL Cioy ngzg
\/N Z J Tra] N Z J J

ij=1 i<j=1

We consider the hole-doped case, with no double occupancy. Each
site has 3 states which we map to the ‘superspin’ space of a boson
b (the holon) and a fermion f, (the spinon):

0)=0"v) b 10)= fllv)
Ca — fozb]L
= 1
S = 5]‘2%5]“5 (SU(1|2) theory)
fifo+bo = 1
U(1) gauge invariance, b— be'®,  f,— f,e'®

( )

The physical electron (¢,) and spin (S) operators are rotations in
this SU(1|2) superspin space.

W,




t—j model

Z Lij zacjoz | Z Jm

7.] 1 7,<j 1

We consider the hole-doped case, with no double occupancy. Each
site has 3 states which we map to the ‘superspin’ space of a boson
b (the holon) and a fermion f, (the spinon):

0) = §7 |v) : cl [0) = bl |v)
Ca = bof
S = %bga(wbﬁ (SU(2|1) theory)
bl b, +§f = 1
U(1) gauge invariance, f— fe'?, b, — bae'®

( )

The physical electron (¢,) and spin (S) operators are rotations in
kthis SU(2|1) superspin space.

W,




t-| model
Z = /DP(T)Q_SB_S“

W
oy
|

j /O ' du / dr Tr (PO, PO, P)
S, = / drdr’ Tr (P(r)Q(r — 7)P(+))
| / drTr (so P(7)) |

Path integral over a superspin P(7) with a
self-consistent self-interaction Q(7)
and a ‘Zeeman superfield’ sg.



t-| model
/ D fo (r)Db(r)DA(r)e~ 5250

sa = [ ar 110 (50 +i0) £al0) +010) (52 +0) o) — in
-

S;; = /dTSofT( Vfa(T) + 1 drdr' R(T — 7") Q(T)COA(T/)

—

(
NS(r)-S(r').

(SU(HZ) theory)




t-| model
Z = /Dfa )Db(T)DA(T)e” S8 5t

Sp = /dT _fj;(T) ((%Jrz’)\) ful7) + bt (7) ((%HA) b(r )—M:

/dT 5o fH(T) fa(T) + t2 / drdr' R(t — 7')el (T)eo ()
J2

@
<
|

drdr'Q(r — )S(7) - S(').

From this action we determined the correlators

(SU(HZ) theory)
R(ir—71") = —{c, (7

T
co(T)) 2
__ 1 =
7y = Z{S(r)-S(r >
Qr =7 3<<> ™))
and finally impose the self-consistency conditions

(R =R() , Q()=Q(r).)




t-| model

zZ = / Db (r)Df () DA(T)e~ S5~

0

SB — /dT bL(T) (E—FZ)\

) bo (7) +§7(7) <(% + M) f(r) — M

S;; = /dT SQbL(T)ba(T) —|-t2/d7'd7'/R(T—T/)CL(T)CQ(T/)

J2

From this action we determined the correlators

R(t —71")

Qr —7)

drdr' Q(t — )S(7) - S(1').

(SU(Q\ 1) theory)

— (co(T)el (1)) -
(550,

and finally impose the self-consistency conditions

| R(r) = R()

Q) =Q(r). |




t-] model RG

We assume power-law decays

1 sgn(7)
Q(T) ™~ ’T‘d_l y R(T) ™~ ‘7_|7~_|_1 '

We ignore the self-consistency condition for now. We decouple the last two
terms by introducing bosonic (¢,, a = 1...3) and fermionic (v, ) baths.

S. Sachdey, Physica C 357,78 (2001)
M.Voijta and L. Fritz, PRB 70, 094502 (2004)



t-] model RG

We assume power-law decays

(SU(HZ) theory)

1 sgn(7)
Q(T) ™~ ’T‘d_l y R(T) ™~ ‘7_|7~_|_1 ‘

We ignore the self-consistency condition for now. We decouple the last two
terms by introducing bosonic (¢,, a = 1...3) and fermionic (v, ) baths.
Then the problem reduces to the Hamiltonian

H = (so+ Nl fo+ A+ go (f1b1a(0) + He) +y0ff - f/s $a(0)
1
+ / ’k’rdkkw};awkza + 5 /dda: [772 + (&B(ba)Z]
where a = (x,y, 2), 0% are Pauli matrices T, 1S canonically conjugate to the

field ¢, and ¢, (0) = ¢ (z = 0), 1o (0) = [ |k|"dk pe.

S. Sachdey, Physica C 357,78 (2001)
M.Voijta and L. Fritz, PRB 70, 094502 (2004)



t-] model RG

We assume power-law decays

(SU(I\Z) theory)

1 sgn(7)
Q(T) ™~ ’T‘d_l y R(T) ™~ ‘7_|7~_|_1 '

We ignore the self-consistency condition for now. We decouple the last two
terms by introducing bosonic (¢,, a = 1...3) and fermionic (v, ) baths.
Then the problem reduces to the Hamiltonian

H = (so+ N fifa+ A0+ go (fibea(0) + He) +~ofl - f/s ()
+ / ’k’rdkkw};a@bkza + % /dda: [772 — (&B(ba)Q]

where a = (x,y, 2), 0% are Pauli matrices T, 1S canonically conjugate to the

field ¢q, and ¢4(0) = ¢o(x = 0), ¥ (0) = [ |k|"dk Y. We identify Q(7)

with temporal correlator of ¢,(0), and R(7) with the temporal correlator
of 1,(0), and it can be verified that these correlators decay as above.

S. Sachdey, Physica C 357,78 (2001)
M.Voijta and L. Fritz, PRB 70, 094502 (2004)



t-] model RG

We assume power-law decays

(SU(I\Z) theory)

1 sgn(7)
-1 7 R(T) ~ |+

Q(1) ~

ka

We ignore the self-consistency condition for now. We decouple the last two
terms by introducing bosonic (¢,, a = 1...3) and fermionic (v, ) baths.
Then the problem reduces to the Hamiltonian

H = (so+ AN flfa+ A0+ go (fwaa(O)—l—H.C.)—FVOfT —2 £5 ¢a(0)

/ KAk k! e + 2 / 2z [12 + (Osba)’)

The impurity superspin is coupled to

a fermionic bath by g,

and to a bosonic bath by ~y,

and sg acts as a local field on the superspin -
a superKondo problem!




t-] model RG

We assume power-law decays

(SU(Z\ 1) theory)

1 sgn(7)
-1 R(T) ~ 7|+

Q(7)

m
ka

We ignore the self-consistency condition for now. We decouple the last two
terms by introducing bosonic (¢,, a = 1...3) and fermionic (v, ) baths.
Then the problem reduces to the Hamiltonian

H = (so+ Nblba + Aft+ go (61,510 (0) + Hee.) + 6%, ~22 b5 ¢4 (0)

+ / |k|rdkkw;ﬂba¢ka + % /ddaj [772 -+ (5’xqba)2]

The impurity superspin is coupled to

a fermionic bath by g,

and to a bosonic bath by ~y,

and sg acts as a local field on the superspin -
a superKondo problem!




t-/ model RG

We can perform a RG analysis for small ¢ = 3—d and ¥ = (1 —r)/2, while imposing
the local constraint exactly. The one-loop 8 functions are

3 3 0, IR
T
g + il
B(y) = —§W+V T977- | ;}7;;\\3\@\ MV»/?//»// :
3 NI DT Al A oo

B(s) = —s 4+ 3¢g%s — g° + 172. T 2;/22;;; /i\\iﬁf,//f/f// ol

i Z WDt st
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| g;;’z,zz SIIIIT

These equations have a fixed point with s =~ 0 with only one relevant direction,
corresponding to the flow of s to Fo0.
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We can perform a RG analysis for small ¢ = 3—d and ¥ = (1 —r)/2, while imposing
the local constraint exactly. The one-loop 8 functions are

3 3 1o} VYA IS -
s R
g + il
B(v) = —§’Y+7 g7 j %7;;\\%\@\ Wf///ﬁ/ﬁ |
3 VL AMAAA ALy Y S s b
B(s) = —s +3g%s — g° + 172 . v 3%2;;7:%. %ﬁﬁ”ﬁiﬁ
04l f r Y Y

i
SAOAA
\§§\\
PRRRY
PRRR
DR
#}«%
0
m
it
AKX
A XA

2 A FA T ottt
v f ; /Z //‘///4/’7]]/ Bl i e o
f//// “ 2 2 e e e
A <t <t st <t <=

0.0
00 o0z o4 o8 08 10

These equations have a fixed point with s =~ 0 with only one relevant direction,
corresponding to the flow of s to +00. The 3 states of the superspin are nearly
degenerate at the fixed point, and the flows away from the fixed point correspond
to different orientations of the field on the superspin: one side (overdoped) favors
the holon, and the other side (underdoped) favors the spinon.




t-] model RG

The scaling dimensions of the electron and spin operators can be determined to
all orders in € and 7 and these imply

Rr) = —3 {ca(n)eh @) ~ D, Qr) = 3 (8- 5O0) ~ 5.




t-] model RG

The scaling dimensions of the electron and spin operators can be determined to
all orders in € and 7 and these imply

Rr) = —3 {ca(n)eh @) ~ D, Qr) = 3 (8- 5O0) ~ 5.

=

Finally, we impose the self-consistency conditions R(7) = R(7), Q(7) = Q(7) and
obtain r =0 (r =1/2) and d = 2 (e = 1), so that at the critical point we have

(calr)eh ) ~ EED () 5(0)) ~ 1.

: 7| 7]




t-] model phase diagram

(SU(2/1) theory]

Metallic
spin glass.
Condense spinon b,
f carrier density p

i |v)

Deconfined
quantum
critical
point

<§z(7') : §Z(O)> ~ constant

(SU(1]2) theory]

Disordered
Fermi liquid.
Condense holon b,
fo carrier density 1+ p

1 |
' v

i) flv)

‘Zeeman superfield’ s.——



t-/ model large M

Each site has 3 states which we map to the space of a boson b
(the holon) and a fermion f, (the spinon):

0) =0 ) el ]0) = fl|v)
Coz:fosz : f;fa‘FbTb:l

To obtain a large M limit, let « = 1... M, endow the boson with

an ‘orbital’ indexa =1... M" and send M — oo at fixed k = M' /M.
Then

M
Caa:fozbg 9 f;rgfa—l_blba:?



t-/ model large M

The critical solution which is self-consistent in both the ¢t and J
terms has A, = Ay = 1/2, implying

ﬁ T >0

. L ]

oo ~{ - (8- 50) ~
R T <0

The same exponents are obtained to all orders in the €, 7 expansion,
but with A_|_ - A_.
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t-| model entropy




t-| model entropy




t-| model entropy

P = Pc

‘p_pc| >0

C _ds
T dT

|p_pc‘ > 0



Hole doped cuprates

The remarkable underlying ground states of cuprate superconductors
Cyril Proust and Louis Taillefer, arXiv:1807.0507
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