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• Landau quasi-particles & holes
• Phonon
• Magnon
• Roton
• Plasmon
• Polaron
• Exciton
• Laughlin quasiparticle
• Bogoliubovon
• Anderson-Higgs mode
• Massless Dirac Fermions
• Weyl fermions
• ….

Quantum matter with quasiparticles:



Most generally, a quasiparticle is 
an “additive” excitation:

Quasiparticles can be combined to yield 
additional excitations, with energy 

determined by the energies and densities of 
the constituents. Such a procedure yields all 
the low-lying excitations. Then we can apply 

the Boltzmann-Landau theory to make 
predictions for dynamics.

Quantum matter with quasiparticles:



Quantum matter without quasiparticles:

No quasiparticle structure to excitations.

But how can we be sure that no 
quasiparticles exist in a given system? 

Perhaps there are some exotic quasiparticles 
inaccessible to current experiments……..

Consider how rapidly the system
loses “phase coherence”,

reaches local thermal equilibrium,
or becomes “chaotic”



K. Damle and S. Sachdev, PRB 56, 8714 (1997)                 
S. Sachdev, Quantum Phase Transitions, Cambridge (1999)

Local thermal equilibration or

phase coherence time, ⌧':

• There is an lower bound on ⌧' in all many-body quantum

systems as T ! 0,

⌧' > C
~

kBT
,

where C is a T -independent constant. Systems

without quasiparticles have ⌧' ⇠ ~/(kBT ).

• In systems with quasiparticles, ⌧' is parametrically larger

at low T ;
e.g. in Fermi liquids ⌧' ⇠ 1/T 2

,

and in gapped insulators ⌧' ⇠ e�/(kBT )
where � is the

energy gap.



A. I. Larkin and Y. N. Ovchinnikov, JETP 28, 6 (1969)

J. Maldacena, S. H. Shenker and D. Stanford, arXiv:1503.01409 

A bound on quantum chaos:

• In classical chaos, we measure the sensitivity of the position at time t,

q(t), to variations in the initial position, q(0), i.e. we measure
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• By analogy, we define ⌧L as the Lyapunov time over which the wave-

function of a quantum system is scrambled by an initial perturbation.

This scrambling can be measured by

⌧���[ ˆA(x, t),

ˆ
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where vB is the ‘butterfly velocity’. This time ⌧L was argued to obey

lower bound

⌧L � 1

2⇡

~
kBT

.

There is no analogous bound in classical mechanics.
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Quantum matter without quasiparticles

⇡ fastest possible many-body quantum chaos



Disordered metals

There is an extensive theory of metals in the presence of 
disorder and interactions 

(Altshuler, Aronov, Lee, Ramakrishnan, Finkelstein…)

However the theory is only reliable in states in which 
quasiparticles are present.

Often there is a flow to strong coupling, but it is invariably 
assumed that this leads to disordered insulators.

But perhaps the strong coupling state is a metallic state 
without quasiparticles, in which the influence of disorder 

largely self averages….(there are many experimental 
indications this may be the case)



Quantum matter without quasiparticles:
The Sachdev-Ye-Kitaev 

(SYK) models
Black holes with 
AdS2 horizons

Fermi surface coupled 
to a gauge field

L[ , a] =  †
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⌧L: the Lyapunov time to reach quantum chaos

⌧L =
~

2⇡kBT

vB ⇠ T 1/2

⌧L =
~

2⇡kBT

vB ⇠ T 1/2

⌧L =
~

2.48 kBT

vB ⇠ v5/3F

e4/3�1/3
T 1/3
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Same low 
energy theory
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A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)

S. Sachdev and J. Ye, PRL 70, 3339 (1993)

Jij;k` are independent random variables with Jij;k` = 0 and |Jij;k`|2 = J2

N ! 1 yields critical strange metal.

SYK model



S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

Feynman graph expansion in Jij.., and graph-by-graph average,

yields exact equations in the large N limit:

G(i!) =
1

i! + µ� ⌃(i!)
, ⌃(⌧) = �J2G2

(⌧)G(�⌧)

G(⌧ = 0

�
) = Q.

Low frequency analysis shows that the solutions must be gapless

and obey

⌃(z) = µ� 1

A

p
z + . . . , G(z) =

Ap
z

for some complex A. The ground state is a non-Fermi liquid, with

a continuously variable density Q.

SYK model



S. Sachdev, PRL 105, 151602 (2010)

SYK and AdS2

A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001)

• Non-zero GPS entropy as T ! 0, S(T ! 0) = NS0 + . . .
Not a ground state degeneracy: due to an exponen-
tially small (in N) many-body level spacing at all energies
down to the ground state energy.

• This entropy, and other dynamic correlators of the SYK
models, imply that the SYK model is holographically dual
to black holes with an AdS2 horizon. The Bekenstein-
Hawking entropy of the black hole equals NS0:

GPS = BH.
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Einstein-Maxwell theory

+ cosmological constant

GPS 
entropy

⇣
~x

⇣ = 1

charge
density Q

BH 
entropy

SYK and AdS2

S. Sachdev, PRL 105, 151602 (2010)

AdS2 ⇥ T2

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

Mapping to SYK applies when temperature ⌧ 1/(size of T2
)

T2



SYK and AdS2
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At frequencies ⌧ J , the i! + µ can be dropped,

and without it equations are invariant under the

reparametrization and gauge transformations

⌧ = f(�)

G(⌧1, ⌧2) = [f 0
(�1)f

0
(�2)]

�1/4 g(�1)

g(�2)

eG(�1,�2)

⌃(⌧1, ⌧2) = [f 0
(�1)f

0
(�2)]

�3/4 g(�1)

g(�2)

e
⌃(�1,�2)

where f(�) and g(�) are arbitrary functions.
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SYK and AdS2

Let us write the large N saddle point solutions of S as

Gs(⌧1 � ⌧2) ⇠ (⌧1 � ⌧2)
�1/2

⌃s(⌧1 � ⌧2) ⇠ (⌧1 � ⌧2)
�3/2.

The saddle point will be invariant under a reperamateri-

zation f(⌧) when choosing G(⌧1, ⌧2) = Gs(⌧1 � ⌧2) leads

to a transformed

eG(�1,�2) = Gs(�1 � �2) (and similarly

for ⌃). It turns out this is true only for the SL(2, R)

transformations under which

f(⌧) =
a⌧ + b

c⌧ + d
, ad� bc = 1.

So the (approximate) reparametrization symmetry is spon-

taneously broken down to SL(2, R) by the saddle point.



Connections of SYK to gravity and AdS2

horizons

• Reparameterization and gauge

invariance are the ‘symmetries’ of

the Einstein-Maxwell theory of

gravity and electromagnetism

• SL(2,R) is the isometry group of AdS2.

SYK and AdS2

ds2 = (d⌧2 + d⇣2)/⇣2 is invariant under

⌧ 0 + i⇣ 0 =
a(⌧ + i⇣) + b

c(⌧ + i⇣) + d

with ad� bc = 1.

A. Kitaev, unpublished



Einstein-Maxwell theory

+ cosmological constant

⇣
~x

⇣ = 1

charge
density Q

SYK and AdS2

AdS2 ⇥ T2

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

Mapping to SYK applies when temperature ⌧ 1/(size of T2
)

T2

Same long-time e↵ective action

for energy and number fluctuations,

involving Schwarzian derivatives of f(⌧).

J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857;                               
K. Jensen, arXiv:1605.06098; J. Engelsoy, T.G. Mertens, and H. Verlinde, arXiv:1606.03438



One can also derive the thermodynamic properties from the large-N saddle point free

energy:

F
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= U � S
0
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2
T 2 + . . . (9)

In the second line we write the free energy in a low temperature expansion,3 where U ⇡
�0.0406J is the ground state energy, S

0

⇡ 0.232 is the zero temperature entropy [32, 4],

and �T = cv = ⇡↵
K

16

p
2�J

⇡ 0.396
�J

is the specific heat [11]. The entropy term can be derived

by inserting the conformal saddle point solution (2) in the e↵ective action. The specific

heat can be derived from knowledge of the leading (in 1/�J) correction to the conformal

saddle, but the energy requires the exact (numerical) finite �J solution.

3 The generalized SYK model

In this section, we will present a simple way to generalize the SYK model to higher di-

mensions while keeping the solvable properties of the model in the large-N limit. For

concreteness of the presentation, in this section we focus on a (1 + 1)-dimensional ex-

ample, which describes a one-dimensional array of SYK models with coupling between

neighboring sites. It should be clear how to generalize, and we will discuss more details of

the generalization to arbitrary dimensions and generic graphs in section 6.

3.1 Definition of the chain model

k

j

J 0
jklm

m

l
k l

j m

Jjklm

Figure 1: A chain of coupled SYK sites: each site contains N � 1 fermion with SYK
interaction. The coupling between nearest neighbor sites are four fermion interaction with
two from each site.

3Starting at T 3.77, this expansion is expected to also involve non-integer powers given by the dimensions
of irrelevant operators in the model.

6

Yingfei Gu, Xiao-Liang Qi, and D. Stanford, arXiv:1609.07832
R. Davison, Wenbo Fu, A. Georges, Yingfei Gu, K. Jensen, S. Sachdev, arXiv.1612.00849

Coupled SYK models
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Einstein-Maxwell-axion theory with saddle point '̂i = kxi

leading to momentum disspation

R. Davison, 
Wenbo Fu, 
A. Georges, 
Yingfei Gu, 
K. Jensen, 
S. Sachdev, 
arXiv.
1612.00849

Y. Bardoux, M. M. Caldarelli, and C. Charmousis, JHEP 05 
(2012) 054; D. Vegh, arXiv:1301.0537; R. A. Davison, PRD 
88 (2013) 086003; M. Blake and D. Tong,  PRD  88 
(2013), 106004; T. Andrade and B. Withers,  JHEP 05 
(2014) 101; M. Blake, PRL 117, 091601 (2016).
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Matching correlators for thermoelectric di↵usion,

and quantum chaos

⌧L = ~/(2⇡kBT ), vB ⇠ T 1/2
,

and thermal di↵usivity DE = v2B⌧L
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1611.00003
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vB : the “butterfly velocity” for the spatial propagation of chaos

⌧L: the Lyapunov time to reach quantum chaos

Thermal di↵usivity, DE :

DE = (universal number) ⇥ v2B⌧L
in all three models



• Quantum chaos is intimately linked to the loss of

phase coherence from electron-electron interactions.

As the time derivative of the local phase is deter-

mined by the local energy, phase fluctuations and

chaos are linked to interaction-induced energy fluc-

tuations, and hence thermal di↵usivity.
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