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S. Chiuzbaian, M. Falub, M. Shi, L. Patthey, and A. Damascelli, Phys. Rev. Lett. 95, 077001 (2005)
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Pseudogap
metal

at low p

Many experimental
indications that this

metal behaves like a

Fermi liquid, but with

Fermi surface size p
and not [/ +p.




S. Badoux, W. Tabis, F. Laliberté, G. Grissonnanche, B. Vignolle, D. Vignolles, J. Béard, D.A. Bonn,
W.N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust, Nature 531, 210 (2016).
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Pseudogap
metal
at low p

Many experimental
indications that this
metal behaves like a
Fermi liquid, but with
Fermi surface size p
and not [/ +p.

Recent experiments
show the PG metal is
04 also present at low T
in high magnetic field
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DW is “(charge)
density wave” order,
which is a low T
instability of the PG
metal. It yields
important clues on

the nature of the PG
metal, and will be
discussed later.
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Onset of antiferromagnetism in metals,
and d-wave superconductivity
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S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido,
H. Ikeda, H.Takeya, K. Hirata, T. Terashima, and Y. Matsuda,

Physical Review B 81, 184519 (2010)



The Hubbard Model

th CinCja T UZ (niT - %) (nli o _> luzczozcwé

t;; — “hopping”. U — local repulsion, y — chemical potential

Spin index a =1, |

_ AT
Nia = C;,,Cia

i P
CinCiB T CjpCio, = 0ij0ap

CinCjiB + CjgCiq = 0

Will study on the square lattice



Fermi surfaces in electron- and hole-doped cuprates
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states
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Electron
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Effective Hamiltonian for quasiparticles:

E _ E T
t’LJ zoz Cja = EkCia Cka
k

1<

with ¢;; non-zero for first, second and third neighbor, leads to satisfactory agree-
ment with experiments. The area of the occupied electron states, A., from
Luttinger’s theory is

A - 214 (1 — x) for hole-doping x
© | 2n*(1+p) for electron-doping p

The area of the occupied hole states, A;,, which form a closed Fermi surface and
so appear in quantum oscillation experiments is A, = 47 — A..



Fermi surface+antiferromagnetism
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T'he electron spin polarization obeys

(S(r,7)) = @, )e™

where K is the ordering wavevector.




Fermi surface+antiferromagnetism

We use the operator equation (valid on each site 7):

1 1 o2U o, U
— . —_ _ 1
U(TLT 2) <n¢ 2> 3 S -+ 1 ( )

Then we decouple the interaction via

exp (?Z/dn@f) = /DJ_;;(T) exp (—Z/dT %j} _jz.gi_)
| - @

We now integrate out the fermions, and look for the saddle point of the
resulting effective action for J;. At the saddle-point we find that the lowest
energy is achieved when the vector has opposite orientations on the A and

B sublattices. Anticipating this, we look for a continuum limit in terms of
a field ¢; where

—



Fermi surface+antiferromagnetism

In this manner, we obtain the “spin-fermion” model

:/DcaDgBexp(—S)
0
— /dTZCLa (87 €k> Ck oy

_)\/dT zagpz O_-)aﬁCiBGiK.ri

1 . 1 . S U
+/d7d2r 5 (Vf,’gp)2 + 5 (87g0)2 + 5902 + -7




Fermi surface+antiferromagnetism

In the Hamiltonian form (ignoring, for now, the time depen-
dence of ), the coupling between ¢ and the electrons takes the
form

_ RO B
Hiw =X D Ba CiiqalafChik,p
k7q7a7/8

where ¢ are the Pauli matrices, the boson momentum q is small,
while the fermion momenum k extends over the entire Brillouin
zone. In the antiferromagnetically ordered state, we may take
¢ x (0,0,1) , and the electron dispersions obtained by diago-
nalizing Hy + Hgqy are

9
Ek T €k+K Ek — €k+K R
Fry = > + T \/< T ) -+ )\Z‘QO‘Z

This leads to the Fermi surfaces shown in the following slides
as a function of increasing |J|.



Fermi surfacetantiferromagnetism

Metal with “large” Fermi surface



Fermi surface+antiferromagnetism

Fermi surfaces translated by K = (7, 7).



Fermi surface+antiferromagnetism

“Hot” spots



Fermi surfacetantiferromagnetism
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Electron and hole pockets in
antiferromagnetic phase with (J) # 0



Square lattice Hubbard model with hole doping

< Increasing SDW order

S. Sachdev, A.V. Chubukov, and A. Sokol, Phys. Rev.B 51, 14874 (1995).
A.V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).



Square lattice Hubbard model with hole doping

<

Increasing SDW order
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S. Sachdev, A.V. Chubukov, and A. Sokol, Phys. Rev.B 51, 14874 (1995).
A.V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).



Square lattice Hubbard model with hole doping
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Increasing SDW order

ZA AN
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Hot spots
where Ek — Ek+K

S. Sachdev, A.V. Chubukov, and A. Sokol, Phys. Rev.B 51, 14874 (1995).
A.V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).



Square lattice Hubbard model with hole doping
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Electron
pockets
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where Ek — Ek+K

Fermi surface breaks up at hot spots
into electron and hole “pockets”

S. Sachdev, A.V. Chubukov, and A. Sokol, Phys. Rev.B 51, 14874 (1995).
A.V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).



Square lattice Hubbard model with hole doping
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Increasing SDW order
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Electron
pockets

Hot spots
where Ek — Ek+K

Fermi surface breaks up at hot spots
into electron and hole “pockets”

S. Sachdev, A.V. Chubukov, and A. Sokol, Phys. Rev.B 51, 14874 (1995).
A.V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).



Square lattice Hubbard model with hole doping
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Square lattice Hubbard model with electron doping
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Square lattice Hubbard model with no doping
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Spin-fluctuation exchange theory of d-wave superconductivity

d -wave pairing near a spin-density-wave instability

D. J. Scalapino, E. Loh, Jr.,* and J. E. Hirsch'

Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
(Received 23 June 1986)

We investigate the three-dimensional Hubbard model and show that paramagnon exchange near
a spin-density-wave instability gives rise to a strong singlet d-wave pairing interaction. For a cu-
bic band the singlet (d,2_,2 and d,,2_,2) channels are enhanced while the singlet (dyy,dx:.dy:)
and triplet p-wave channels are suppressed. A unique feature of this pairing mechanism is its
sensitivity to band structure and band filling.

Physical Review B 34, 8190 (1986)



Spin-fluctuation exchange theory of d-wave superconductivity

< IncreasLiS\g SDW order
o ]/R[ /\ /\
NN NN




Spin-fluctuation exchange theory of d-wave superconductivity

Fermions at the large Fermi surtace exchange
fuctuations of the SDW order parameter .



Spin-fluctuation exchange theory of d-wave superconductivity

We now allow the SDW field ¢ to be dynamical, coupling to elec-
trons as

_ S
Hyqw =— Y Bq" Ch oFapCltKtaq,s-
k7q7a7/6

Exchange of a ¢ quantum leads to the effective interaction

:——> > S‘ ozﬁv5(Q)CL,aCkJrq,ﬁCLNCP_q"S’

d p,v,0 k,o,3

where the pairing interaction is

X0
(24 (q-K)?’

with yp&? the SDW susceptibility and € the SDW correlation length.

Vaﬁ,vé(q) — 0_3ozﬁ ' 53*)/5



Spin-fluctuation exchange theory of d-wave superconductivity

BCS Gap equation

In BCS theory, this interaction leads to the ‘gap
equation’ for the pairing gap Ak x (ckrc—k|)-

Z SXO A
P+ P -k-K)* 2\/52 + A2

Non-zero solutions of this equation require that
Ay and A, have opposite signs when p — k ~ K.
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Unconventional pairing at and near hot spots
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Pairing “glue” from antiferromagnetic fluctuations

V.]. Emery, J. Phys. (Paris) Colloq. 44, C3-977 (1983)

D.J. Scalapino, E. Loh, and |.E. Hirsch, Phys. Rev. B 34,8190 (1986)
K. Miyake, S. Schmitt-Rink, and C. M.Varma, Phys. Rev. B 34, 6554 (1986)
S. Raghu, S.A. Kivelson, and D.J. Scalapino, Phys. Rev. B 81,224505 (2010)



Quantum phase transition with onset of
antiferromagnetism in a metal

(@) # 0

Metal with electron
and hole pockets

Metal with “large”
Fermi surface




Quantum phase transition with onset of
antiferromagnetism in a metal

Find new instabilities
upon approaching
critical point

(@) # 0

Metal with electron
and hole pockets

FermiNurface




Quantum phase transition with onset of
antiferromagnetism in a metal
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Square lattice Hubbard model with hole doping
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Increasing SDW order
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Fermi surface breaks up at hot spots
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S. Sachdev, A.V. Chubukov, and A. Sokol, Phys. Rev.B 51, 14874 (1995).
A.V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).



QMC for the onset of antiferromagnetism

Hot spots in a single band model



QMC for the onset of antiferromagnetism

E. Berg,

M. Metlitski, and
S. Sachdey,
Science 338, 1606
(2012).

Hot spots in a two band model



QMC for the onset of antiferromagnetism

Faithful
realization
of the
generic
universal
low

energy
theory for
the onset
of
antiferro-
magnetism

Hot spots in a two band model

E. Berg,

M. Metlitski, and
S. Sachdey,
Science 338, 1606
(2012).



QMC for the onset of antiferromagnetism

Sign
problem is
absent as
long as K

connects
hotspots in
distinct
bands

Hot spots in a two band model

E. Berg,

M. Metlitski, and
S. Sachdey,
Science 338, 1606
(2012).



QMC for the onset of antiferromagnetism

Electrons with dispersion ey
interacting with fluctuations of the
antiferromagnetic order parameter .

— /Dcaﬂgﬁexp (—S)
9,
— /dek:cLa (5’7‘ 5k> Cka
1
—|-/de2$ 2 (V.3)" + ggﬁz + ..

_)\/dTZgaz CWUQBCZB




QMC for the onset of antiferromagnetism

Electrons with dispersions 51(53) and 51(3)

interacting with fluctuations of the
antiferromagnetic order parameter .

E. Berg,
/ D DY DG exp (—S) M. Metlitski, and
S. Sachdey,
Science 338, 1606
= [yt (57 A

o far el (g ) b

B 1 | No sign problem !

2

—)\/dTZgoz )% ,EZ)T&’Q C,E%) + H.c.




QMC for the onset of antiferromagnetism

Electrons with dispersions 51(53) and 51(3)

interacting with fluctuations of the
antiferromagnetic order parameter .

E. Berg,
/ D DY DG exp (—S) M. Metlitski, and
S. Sachdey,
Science 338, 1606
= [yt (57 A

Applies without
changes to the
microscopic band
structure in the
iron-based
superconductors

o far el (g ) b

1
+/de% E (V.3)" + 252 + ...

—)\/dTngz )% 52”5’0456%) + H.c.




QMC for the onset of antiferromagnetism
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Yoni Schattner, Max H. Gerlach, Simon Trebst, and Erez Berg, arXiv:1512.07257
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Quantum phase transition with
Fermi surface reconstruction

—
(p) # 0 (@) =0
Metal with electron Metal with “large”
and hole pockets Fermi surface




Separating onset of SDVV order
and Fermi surface reconstruction

—
(@) # 0 ) =0
Metal with electron Metal with “large”

and hole pockets Fermi surface




Separating onset of SDVV order
and Fermi surface reconstruction

Electron and/or hole
Fermi pockets form in
“local” SDWV order, but

quantum fluctuations

destroy long-range
SDWV order

Metal with electron
and hole pockets

Metal with “large”
Fermi surface

T. Senthil, S. Sachdev, and M.Voijta, Phys. Rev. Lett. 90, 216403 (2003)



Separating onset of SDVV order
and Fermi surface reconstruction

Electron and/or hole

Fermi pockets form in
“local” SDWV order, but

quantum fluctuations

destroy long-range
SDWV order

() =0
Algebraic Charge liquid
(ACL) or Fractionalized
Fermi liquid (FL*) phase || Metal with “large”
with no symmetry Fermi surface

breaking and pocket
Fermi surfaces

(@) # 0

Metal with electron
and hole pockets

T. Senthil, S. Sachdeyv, and M.Voijta, Phys. Rev. Lett. 90, 216403 (2003)



Spin density wave order, topological order,

and Fermi surface reconstruction

Subir Sachdev,!»* Erez Berg,® Shubhayu Chatterjee,! and Yoni Schattner®

arXiv: | 606.xxxxx

http://gpt.physics.harvard.edu/p300.pdf



http://qpt.physics.harvard.edu/p300.pdf

Quantum phase transition with
Fermi surface reconstruction

—
(p) # 0 (@) =0
Metal with electron Metal with “large”
and hole pockets Fermi surface




(Hertz theory for XY SDW orderJ

The Hertz theory for the onset of SDW order can be described by the following Hamiltonian
Hgaw = H.+ Hy + Hy, (1.1)

where H,. describes electrons (of density (1 — p)) hopping on the sites of a square lattice

H. == (tij + pdij) chocjo (1.2)
]
with c;, the electron annihilation operator on site ¢ with spin o =7,]. We represent the SDW

order by a lattice XY rotor model, described by an angle 6;, and its canonically conjugate number

operator /NV;, obeying
H@ — —Zjij COS(@Z' — QJ) —|—4AZNZ2 ; [QZ,NJ] — i(SZ-j, (13)
i<j i
where J;; positive exchange constants, and A is proportional to the bare spin-wave gap (the 4 is for

future convenience). A term linear in N; is also allowed in Hy, but we ignore it for simplicity; such

a linear term will not be allowed when we consider models with SU(2) symmetry in Section V.



(Hertz theory for XY SDW orderJ

Finally, there is a ‘Yukawa’ coupling between the XY order parameter, ¢, and the fermions
Hy = =)\ Z n; [e_wic%cu + ewicl.lcn} : (1.4)
where

n = (—1)"T (1.5)

is the staggering factor representing the opposite spin orientations on the two sublattices. Note

that the Yukawa coupling, and the remaining Hamiltonian, commute with the total spin along the

1 1
Sz — Z (Nz -+ §C;'rTciT — 50&0@) . (16)

()

2z direction
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Separating onset of SDVV order
and Fermi surface reconstruction

Electron and/or hole

Fermi pockets form in
“local” SDWV order, but

quantum fluctuations

destroy long-range
SDWV order

() =0
Algebraic Charge liquid
(ACL) or Fractionalized
Fermi liquid (FL*) phase || Metal with “large”
with no symmetry Fermi surface

breaking and pocket
Fermi surfaces

(@) # 0

Metal with electron
and hole pockets

T. Senthil, S. Sachdeyv, and M.Voijta, Phys. Rev. Lett. 90, 216403 (2003)



- Z gauge theory for fractionalized )

XY SDW order coupled to electrons

Hi=H.+ Hpz, + Hy
He=— Z (tij + 10ij) CloCio

Hy = —)\Zm { —i0i ZTCZ + i CLCZT}

Hyz, = — ZJZ]/LZ]COS ((6; —0,)/2) +4AZN2—gZ,uZJ KZ

1<

11
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Evidence for pseudogap metal

as ACL/FL*
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Figure: K. Fujita and J. C. Seamus Davis



Evidence for pseudogap metal as ACL/FL*

e FL* Fermi pockets are compatible with photoemission at high 7.




Fermi surfaces in one-band models of FL*

M. Punk, A.Allais, and S. Sachdey, Y. Qi and S. Sachdev,
PNAS 12,9552 (2015) Phys. Rev. B 81, 115129 (2010)

“Back side” of Fermi surface is suppressed for observables
which change electron number in the square lattice




Kyle M. Shen, F. Ronning, D. H. Lu, F. Baumberger, N. J. C. Ingle, W. S. Lee, W. Meevasana,
Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, Z.-X. Shen, Science 307, 901 (2005)
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Evidence for pseudogap metal as ACL/FL*
e FL* Fermi pockets are compatible with photoemission at high T

e Optical conductivity ~ 1/(—iw + 1/7) with

1/7 ~ w? + T2, with carrier density p (Mirzaei et al., PNAS 110,
5774 (2013)).




Evidence for pseudogap metal as ACL/FL*

e FL* Fermi pockets are compatible with photoemission at high T

e Optical conductivity ~ 1/(—iw + 1/7) with
1/7 ~ w? + T2, with carrier density p (Mirzaei et al., PNAS 110,

5774 (2013)).

e Magnetoresistance p,, ~ 71 (1
et al., PRL 113, 177005 (2014).

aH*T?) with 7 ~ T~2 (Chan




Evidence for pseudogap metal as ACL/FL*

FL* Fermi pockets are compatible with photoemission at high 7.

Optical conductivity ~ 1/(—iw + 1/7) with
1/7 ~ w? + T2, with carrier density p (Mirzaei et al., PNAS 110,
5774 (2013)).

Magnetoresistance py, ~ 771 (1 4+ aH?*T?) with 7 ~ T~? (Chan
et al., PRL 113, 177005 (2014).

Charge density wave instabilities of FL* have wave vector and
form-factors which agree with STM/X-ray observations in DW
region (D. Chowdhury and S. Sachdev, PRB 90, 245136 (2014)).
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Y. Kohsaka et al., SCIENCE 315, 1380 (2007)
M. H. Hamidian et al., NATURE PHYSICS 12, 150 (2016)

Density wave (DW)
order at low T and p

dSC + DW

I L
0.10 0.15

p




M. A. Metlitski and S. Sachdev, PRB 82, 075128 (2010). S. Sachdev R. La Placa, PRL 111, 027202 (2013).
K. Fujita, M. H Hamidian, S. D. Edkins, Chung Koo Kim, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi,
H. Eisaki, S. Uchida, A. Allais, M. J. Lawler, E.-A. Kim, S. Sachdev, and J. C. Davis, PNAS 111, E3026 (2014)
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Evidence for pseudogap metal as ACL/FL*

FL* Fermi pockets are compatible with photoemission at high 7.

Optical conductivity ~ 1/(—iw + 1/7) with
1/7 ~ w? + T2, with carrier density p (Mirzaei et al., PNAS 110,
5774 (2013)).

Magnetoresistance py, ~ 771 (1 4+ aH?*T?) with 7 ~ T~? (Chan
et al., PRL 113, 177005 (2014).

Charge density wave instabilities of FL* have wave vector and
form-factors which agree with STM/X-ray observations in DW

region (D. Chowdhury and S. Sachdev, PRB 90, 245136 (2014)).

T'-independent positive Hall co-efficient, Ry, corresponding to car-
rier density p in the higher temperature pseudogap (Ando et al.,
PRL 92, 197001 (2004)) and in recent measurements at high fields,
low T', and around p ~ 0.16 in YBCO (Badoux et al., Nature 531,
210 (2016)).




Hall effect measurements in YBCO
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Badoux, Proust, Taillefer et al., Nature 531,210 (2016)
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Hall effect measurements in YBCO

PN | e
N g | e
1.9~ SDW
AU
0.5+
P
O .
0 0.1
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Invariance,
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density p

Badoux, Proust, Taillefer et al., Nature 531,210 (2016)
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Hall effect measurements in YBCO
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Hall effect measurements in YBCO
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Quantum critical point at optimal doping

Transition is primarily “topological”. Main change
is in the size of the Fermi surface.

Symmetry-breaking and Landau order parameters
appear to play a secondary role.

The main symmetry breaking which appears co-incident
with the transition is Ising-nematic ordering. But
this symmetry cannot change the size of the Fermi
surface; similar comments apply to time-reversal sym-
metry.

Need a gauge theory for transition from “topological”
to “confined” state.
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Infinite-range model with guasiparticles

H = 1/2 Z twczcﬁ

1,7=1

cici +cjc; =0 | C.CT- + ch-cZ- = 04
r -

t;; are independent random variables with ¢;; = 0 and |t;;]% = t°

Fermions occupying the eigenstates of a
N x N random matrix



Infinite-range model with gquasiparticles

Feynman graph expansion in t¢;; , and graph-by-graph average,
yields exact equations in the large N limit:
1
iw 4 b — N(iw)
Gir=0")=0Q.

Giw) = . X(1) = t*°G(T)
G(w) can be determined by solving a quadratic equation.

A

—Im G(w)




Infinite-range model with guasiparticles

Now add weak interactions

1
_ | T
— 1/2 E twcZ Cj e )3/2 g Jijke C;C iCrCy

7.7 1 ,],k,e 1

Jij.ke are independent random variables with J;;.ke = 0 and |J;;.x¢]? = J*. We
compute the lifetime of a quasiparticle, 7., in an exact eigenstate 1, (¢) of the
free particle Hamitonian with energy E,. By Fermi’s Golden rule, for E,, at the
Fermi energy

Ti = 1.J%ps / dEgdE,dEs f(Eg)(1 — f(E,))(1 — f(E5))d(Ea + Eg — Ey — Es)
7TSJZP(Q) 72
4

where pg is the density of states at the Fermi energy.

Fermi liquid state: Two-body interactions lead to a scattering time
of quasiparticle excitations from in (random) single-particle eigen-
states which diverges as ~ T2 at the Fermi level.




SYK model without quasiparticles
To obtain a non-Fermi liquid, we set ¢;; = 0:

1
HSYK:(QN)3/2 Z Jij. kEC CkCg MZ
7.]7k7£ 1

= =3 de,

Hgvi 1s similar, and has identical properties, to a related model
proposed by SY in 1993.

o 2

J15611 ce

Jg.9.12.14
® 14

S.Sachdev and J.Ye, Phys. Rev. Lett. 70, 3339 (1993)
A. Kitaey, unpublished; S. Sachdev, PRX 5, 041025 (2015)



SYK model without quasiparticles
To obtain a non-Fermi liquid, we set ¢;; = 0:

1
HSYK:(QN)3/2 Z ngkec CkCg MZC
1,7,k =1

= =3 de,

Hgvi 1s similar, and has identical properties, to a related model
proposed by SY in 1993.

°° A fermion can move only
J15611 6e by entangling with another
fermion: the Hamiltonian
has “nothing but
entanglement” .

Jg.9.12.14
® 14

S.Sachdev and J.Ye, Phys. Rev. Lett. 70, 3339 (1993)
A. Kitaey, unpublished; S. Sachdev, PRX 5, 041025 (2015)



SYK model without quasiparticles

Feynman graph expansion in J;; , and graph-by-graph average,
yields exact equations in the large N limit:

Low frequency analysis shows that the solutions must be gapless
and obey

E(z):,u—%\/g—k... , G(z) = —

for some complex A. The ground state is a non-Fermi liquid, with
a continuously variable density O.

S.Sachdev and |.Ye, Phys. Rev. Lett. 70, 3339 (1993)



SYK model without quasiparticles

! 18 T T T
——large N exact ——Boson N=12

——EDN=8 16 * ——Boson N=16 | |
ED N=12 T 10 Fermion N=12
——ED N=16 s MIN L [eee Fermion N=16
14r 2 s\t |
_ 0

12 -

-0.2 0 0.2

Large N solution of equations for G and X agree well with exact diagonal-
ization of the finite N Hamiltonian.

However, exact diagonalization of the same model with hard-core bosons
indicates the presence of spin-glass order in the ground state.

WV. Fu and S. Sachdey, arXiv: 1603.05246



SYK model without quasiparticles

The entropy per site, &, has a non-zero limit as 7' — 0. This is not due to
an extensive degeneracy, but due to an energy level spacing ~ e~ %" in the
entire many-body spectrum all the way down to the ground state. At low
1" we write

S(T'—=0)=8y+yT+ ...
where the specific heat is C = ~T', and &y obeys

dS

—9 — or€ :

dQ
with &£ a spectral asymmetry parameter, which is a known tunction of Q. &
fully determines the Green’s function at low 1" and w as a ratio of Gamma

functions.

Note that Sy and & involve low-lying states, while O de-
pends upon all states, and details of the UV structure.

A. Georges, O. Parcollet,and S. Sachdev Phys. Rev.B 63, 134406 (2001)
J. Maldacena and D. Stanford, arXiv:1604.07818



Infinite-range (SYK) model without quasiparticles

After integrating the fermions, the partition function can be writ-
ten as a path integral with an action S analogous to a Luttinger-

Ward functional

7 = /DG(ﬁ,Tg)DZ(ﬁ,Tg)exp(—NS)
S =1Indet [6(T — 72)(0r, + 1) — 2(11,T2)]
+/d71d722(71,72) G(79,m1) + (J?/2)G*(72,71)G* (11, T2)]

At frequencies < J, the time derivative in the determinant is less
important, and without it the path integral is invariant under the

reparametrization and gauge transformations A. Georges and O Parcollet
PRB 59, 5341 (1999)
T = f(O') A. Kitaev, unpublished
(o1) S. Sachdev, PRX 5, 041025 (2015)
—1/4 o)
Glri,m) = [ (01) /" (02)] " LI Glo1, 00)
g(o2)
—3/4 9(01
S(r1,m) = [F(00) £ (02)] " 27 (04, )
g(o2)

where f(o) and g(o) are arbitrary functions.



Infinite-range (SYK) model without quasiparticles
Let us write the large IV saddle point solutions of S as

—1/2

GS(Tl—TQ)N(Tl—TQ) ] ZS(Tl_TQ)N(Tl—TQ)_S/Q.

These are not invariant under the reparametrization symmetry but are in-
variant only under a SL(2,R) subgroup under which

at + b

So the (approximate) reparametrization symmetry is spontaneously broken.

Reparametrization zero mode
Expand about the saddle point by writing

G(r1,72) = [f' (1) f ()]G (f(11) — f(72))

(and similarly for ) and obtain an effective action for f(7). This action
does not vanish because of the time derivative in the determinant which is
not reparameterization invariant.

J. Maldacena and D. Stanford, arXiv:1604.07818
See also A. Kitaey, unpublished, and ]. Polchinski and V. Rosenhaus, arXiv:1601.06768



Infinite-range (SYK) model without guasiparticles

However the effective action must vanish for SL(2,R) transforma-
tions because Gy, > are invariant under it. In this manner we
obtain the effective action as a Schwarzian

N g 1"\ 2
NSeff: 47:2//d7_{f77-} 9 {f77_}:J;’/ 5(%) ’

where the specific heat, C = ~T..

The Schwarzian effective action implies that the
SYK model saturates a lower bound on a Lya-
punov time for many-body quantum chaos: this is
time over which the quantum system loses mem-
ory of its initial state (the “butterfly effect”)

1 h
_27T]€BT

TL

W

J. Maldacena and D. Stanford, arXiv:1604.07818
See also A. Kitaey, unpublished, and ]. Polchinski and V. Rosenhaus, arXiv:1601.06768




Infinite-range (SYK) model without quasiparticles

The Schwarzian describes fluctuations of the energy operator with
scaling dimension h = 2.

Apart from the energy operator associated with the Schwarzian,
there are an infinite number of other scalar operators with irrational
scaling dimensions given by the roots ot

. <7T(2h— 1)) _ 1—2h

4 3

= h=3.77354..., 5.67946..., 7.63197..., 9.60396...,...

J. Maldacena and D. Stanford, arXiv:1604.07818
See also A. Kitaey, unpublished, and ]. Polchinski and V. Rosenhaus, arXiv:1601.06768



SYK and Ad$S;

charge

density O
AdSQ X R2

ds? = (d¢? — dt?) /(2 + dx?

Gauge field: A = (£/()dt

S|

PHYSICAL REVIEW LETTERS [05, 151602 (2010)

S

Holographic Metals and the Fractionalized Fermi Liquid

Subir Sachdev

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 23 June 2010; published 4 October 2010)

We show that there 1s a close correspondence between the physical properties of holographic metals
near charged black holes in anti—de Sitter (AdS) space, and the fractionalized Fermi liquid phase of the
lattice Anderson model. The latter phase has a ““small” Fermi surface of conduction electrons, along with
a spin liquid of local moments. This correspondence implies that certain mean-field gapless spin liquids
are states of matter at nonzero density realizing the near-horizon, AdS, X R? physics of Reissner-
Nordstrom black holes.



SYK and Ad$S;

charge

density O
AdSs x R?

ds® = (d¢? — dt?) /(2% + dx?

Gauge field: A = (£/()dt

S|

e The non-zero T' — 0 entropy density, &g, matches the Bekenstein-
Hawking-Wald entropy density of extremal AdSs horizons, and the
dependence of the fermion Green’s function on w, T', and &£, matches

that of a Dirac fermion in AdSs (as computed by T. Faulkner, Hong
Liu, J. McGreevy, and D. Vegh, PRD 83, 125002 (2011)).

S.Sachdev, PRL 105, 51602 (2010)

e More recently, it was noted that the relation dSy/dQ = 2n€ also
matches between SYK and gravity, where £, the electric field on the
horizon, also determines the spectral asymmetry of the Dirac fermion.

S. Sachdev, PRX 5,041025 (2015)



SYK and Ad$S;

charge

density O
AdS, x R?

ds® = (d¢? — dt?) /(2% + dx?

Gauge field: A = (£/()dt

S|

The same Schwarzian effective action describes low energy
fluctuations on the boundary theory of gravity theories with
AdSs near-horizon geometries (including the AdS-Reissner-
Nordstrom solution of Einstein-Maxwell theory in 4 space-
time dimensions). And the co-efficient of the Schwarzian,
N~ /4n?, determines the specific heat C = yT.

A

A. Kitaev, unpublished; A. Almheiri and |. Polchinski, JHEP 1511 (2015) 014;]. Polchinski and V. Rosenhaus,
arXiv: 1601.06768; |. Maldacena and D. Stanford, arXiv:1604.07818; K. Jensen, arXiv:1605.06098; |. Engelsoy,
T.G. Mertens, and H.Verlinde, arXiv:1606.03438; A. Aimheiri and B. Kang, arXiv: 1606.04108



SYK and AdS,

charge

density O
AdS, x R?

ds® = (d¢? — dt?) /(2% + dx?

Gauge field: A = (£/()dt

S|

The Schwarzian effective action implies that both the SYK
model and the AdSs theories saturate the lower bound on the

Lyapunov time
1 h

B 27T kBT

TL

A. Kitaev, unpublished; A. Almheiri and |. Polchinski, JHEP 1511 (2015) 014;]. Polchinski and V. Rosenhaus,
arXiv: 1601.06768; |. Maldacena and D. Stanford, arXiv:1604.07818; K. Jensen, arXiv:1605.06098; |. Engelsoy,
T.G. Mertens, and H.Verlinde, arXiv:1606.03438; A. Aimheiri and B. Kang, arXiv: 1606.04108



