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In a conventional metal 
(a Fermi liquid), with no 

broken symmetry, the area 
enclosed by the Fermi 
surface must be 1+p But relative to 

the band 
insulator, there 
are 1+ p holes

per square
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A conventional 
metal:

the Fermi liquid 
with Fermi 

surface of size 
1+p

M. Platé, J. D. F. Mottershead, I. S. Elfimov, D. C. Peets, Ruixing Liang, D. A. Bonn, W. N. Hardy,
S. Chiuzbaian, M. Falub, M. Shi, L. Patthey, and A. Damascelli, Phys. Rev. Lett. 95, 077001 (2005)
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Pseudogap 
metal 

at low p
Many experimental 
indications that this 
metal behaves like a 
Fermi liquid, but with 
Fermi surface size p 

and not 1+p.
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Pseudogap 
metal 

at low p
Many experimental 
indications that this 
metal behaves like a 
Fermi liquid, but with 
Fermi surface size p 

and not 1+p.

Recent experiments 
show the PG metal is 
also present at low T 
in high magnetic field

S. Badoux, W. Tabis, F. Laliberté, G. Grissonnanche, B. Vignolle, D. Vignolles, J. Béard, D.A. Bonn,
W.N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust, Nature 531, 210 (2016).
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DW is “(charge) 
density wave” order, 

which is a low T 
instability of the PG 

metal. It yields 
important clues on 

the nature of the PG 
metal, and will be 
discussed later.



Onset of antiferromagnetism in metals, 
and d-wave superconductivity
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S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, 
H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, 

Physical Review B 81, 184519 (2010)
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The Hubbard Model

Will study on the square lattice
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Fermi surfaces in electron- and hole-doped cuprates

Hole 
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Electron 
states 
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E↵ective Hamiltonian for quasiparticles:

H0 = �
X

i<j

tijc
†
i↵cj↵ ⌘

X

k

"kc
†
k↵ck↵

with tij non-zero for first, second and third neighbor, leads to satisfactory agree-
ment with experiments. The area of the occupied electron states, Ae, from
Luttinger’s theory is

Ae =

⇢
2⇡2(1� x) for hole-doping x
2⇡2(1 + p) for electron-doping p

The area of the occupied hole states, Ah, which form a closed Fermi surface and
so appear in quantum oscillation experiments is Ah = 4⇡2 �Ae.
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The electron spin polarization obeys
�

⌃S(r, �)
⇥

= ⌃⇥(r, �)eiK·r

where K is the ordering wavevector.
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Fermi surface+antiferromagnetism



We use the operator equation (valid on each site i):
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Then we decouple the interaction via
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We now integrate out the fermions, and look for the saddle point of the

resulting e↵ective action for

~Ji. At the saddle-point we find that the lowest

energy is achieved when the vector has opposite orientations on the A and

B sublattices. Anticipating this, we look for a continuum limit in terms of

a field ~'i where

~Ji = ~'i e
iK·ri

(3)

Fermi surface+antiferromagnetism



In this manner, we obtain the “spin-fermion” model
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Fermi surface+antiferromagnetism
In the Hamiltonian form (ignoring, for now, the time depen-
dence of ~'), the coupling between ~' and the electrons takes the
form

Hsdw = �
X

k,q,↵,�

~'q · c†k+q,↵~�↵�ck+K,�

where ~� are the Pauli matrices, the boson momentum q is small,
while the fermion momenum k extends over the entire Brillouin
zone. In the antiferromagnetically ordered state, we may take
~' / (0, 0, 1) , and the electron dispersions obtained by diago-
nalizing H0 +Hsdw are

Ek± =
"k + "k+K

2
±

s✓
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2

◆2

+ �2|~'|2

This leads to the Fermi surfaces shown in the following slides
as a function of increasing |~'|.



Metal with “large” Fermi surface

Fermi surface+antiferromagnetism



Fermi surfaces translated by K = (�,�).

Fermi surface+antiferromagnetism



“Hot” spots

Fermi surface+antiferromagnetism



Electron and hole pockets in

antiferromagnetic phase with h~'i 6= 0

Fermi surface+antiferromagnetism



Increasing SDW order
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S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). 
A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

�

Hole 
pockets

Electron 
pockets

Square lattice Hubbard model with hole doping
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Square lattice Hubbard model with hole doping
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Square lattice Hubbard model with electron doping

Metal with 
“large” Fermi 

surface
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Metal with 
electron and 
hole pockets
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and smalland large



Square lattice Hubbard model with no doping

Metal with 
“large” Fermi 

surface

s

Increasing SDW order

Metal with 
electron and 
hole pockets

Insulator
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Physical Review B 34, 8190 (1986)

Spin-fluctuation exchange theory of d-wave superconductivity
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Spin-fluctuation exchange theory of d-wave superconductivity

⇥�

Fermions at the large Fermi surface exchange
fluctuations of the SDW order parameter ⇥�.



We now allow the SDW field ⌦⌅ to be dynamical, coupling to elec-
trons as

Hsdw = �
�

k,q,�,⇥

⌦⌅q · c†k,�⌦⇥�⇥ck+K+q,⇥ .

Exchange of a ⌦⌅ quantum leads to the e�ective interaction
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where the pairing interaction is

V�⇥,⇤⌅(q) = ⌦⇥�⇥ · ⌦⇥⇤⌅
⇤0

��2 + (q�K)2
,

with ⇤0�2 the SDW susceptibility and � the SDW correlation length.

Spin-fluctuation exchange theory of d-wave superconductivity



BCS Gap equation

In BCS theory, this interaction leads to the ‘gap
equation’ for the pairing gap �k ⇤ ⌅ck⇥c�k⇤⇧.

�k = �
⇤
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�
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Non-zero solutions of this equation require that
�k and �p have opposite signs when p� k ⇥ K.

Spin-fluctuation exchange theory of d-wave superconductivity



Unconventional pairing at and near hot spots
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Pairing “glue” from antiferromagnetic fluctuations

V. J. Emery, J. Phys. (Paris) Colloq. 44, C3-977 (1983)
D.J. Scalapino, E. Loh, and J.E. Hirsch, Phys. Rev. B 34, 8190 (1986)

K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B 34, 6554 (1986)
S. Raghu, S.A. Kivelson, and D.J. Scalapino, Phys. Rev. B 81, 224505 (2010)
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Quantum phase transition with onset of 
antiferromagnetism in a metal

Find new instabilities 
upon approaching 

critical point
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Sign-problem free quantum Monte 
Carlo for the onset of 
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Hot spots in a single band model

QMC for the onset of antiferromagnetism
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Hot spots in a two band model

QMC for the onset of antiferromagnetism

E. Berg, 
M. Metlitski, and 

S. Sachdev, 
Science 338, 1606  

(2012).



Faithful 
realization

of the 
generic 

universal 
low

energy 
theory for 
the onset 

of 
antiferro-

magnetism. 
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Hot spots in a two band model

QMC for the onset of antiferromagnetism

E. Berg, 
M. Metlitski, and 

S. Sachdev, 
Science 338, 1606  

(2012).



Sign 
problem is 
absent as 
long as K 
connects 

hotspots in 
distinct 
bands 

K

Hot spots in a two band model

QMC for the onset of antiferromagnetism

E. Berg, 
M. Metlitski, and 

S. Sachdev, 
Science 338, 1606  

(2012).



QMC for the onset of antiferromagnetism

Electrons with dispersion "

k

interacting with fluctuations of the

antiferromagnetic order parameter ~'.
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Electrons with dispersions "
(x)
k

and "

(y)
k

interacting with fluctuations of the
antiferromagnetic order parameter ~'.
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QMC for the onset of antiferromagnetism

No sign problem !

E. Berg, 
M. Metlitski, and 

S. Sachdev, 
Science 338, 1606  

(2012).
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QMC for the onset of antiferromagnetism

Applies without 
changes to the 

microscopic band 
structure in the 

iron-based 
superconductors

E. Berg, 
M. Metlitski, and 

S. Sachdev, 
Science 338, 1606  

(2012).



Competing Orders in a Nearly Antiferromagnetic Metal

Yoni Schattner,1, ⇤ Max H. Gerlach,2, ⇤ Simon Trebst,2 and Erez Berg1

1Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot, 76100, Israel
2Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany

(Dated: December 24, 2015)

We study the onset of spin-density wave order in itinerant electron systems via a two-dimensional lattice
model amenable to numerically exact, sign-problem-free determinantal quantum Monte Carlo simulations. The
finite-temperature phase diagram of the model reveals a dome-shaped d-wave superconducting phase near the
magnetic quantum phase transition. Above the critical superconducting temperature, we observe an extended
fluctuation regime, which manifests itself in the opening of a gap in the electronic density of states and an en-
hanced diamagnetic response. While charge density wave fluctuations are moderately enhanced in the proximity
of the magnetic quantum phase transition, they remain short-ranged. The striking similarity of our results to the
phenomenology of many unconventional superconductors points a way to a microscopic understanding of such
strongly coupled systems in a controlled manner.

PACS numbers: 74.25.Dw, 74.40.Kb

A common feature of many strongly correlated metals, such
as the cuprates, the Fe-based superconductors, heavy-fermion
compounds, and organic superconductors, is the close prox-
imity of unconventional superconductivity (SC) and spin den-
sity wave (SDW) order in their phase diagrams. This sug-
gests that there is a common, universal mechanism at work
behind both phenomena [1]. In some of these systems, ad-
ditional types of competing or coexisting orders appear upon
suppressing the SDW order, such as nematic, charge-density
wave (CDW), or possibly also pair density wave (PDW) or-
der. Such a complex interplay between multiple types of elec-
tronic order, with comparable onset temperature scales, is a
recurring theme in strongly correlated systems [2].

These findings call for a detailed understanding of the
physics of metals on the verge of an SDW transition. It
has long been proposed that nearly–critical antiferromag-
netic fluctuations can mediate unconventional superconduc-
tivity [3, 4]. Many studies have focused on the universal prop-
erties of an antiferromagnetic quantum critical point (QCP)
in a metal [5–11]. In particular, it has been proposed that
superconductivity is anomalously enhanced at the magnetic
QCP [12–15]. The same antiferromagnetic interaction can
enhance other subsidiary orders, such as CDW [14, 16, 17]
or PDW [18, 19]. Near the QCP, an approximate symme-
try relating the SC and density wave order may emerge [14].
The resulting multi-component order parameter would have a
substantial fluctuation regime, proposed as the origin of the
“pseudogap” observed in the cuprates [16, 20–22]. A deep
minimum in the penetration depth of the SC at low tempera-
ture, seen in the iron-based SC BaFe

2

(As
1�x

P
x

)
2

[23], has
been proposed as a generic manifestation of the underlying
antiferromagnetic QCP [24, 25].

Due to the strong coupling nature of the problem of a nearly
antiferromagnetic metal, obtaining analytically controlled so-
lutions has proven difficult. In Ref. [26], a two-dimensional
lattice model of a nearly-antiferromagnetic metal amenable
to sign-problem-free, determinantal quantum Monte-Carlo
(DQMC) simulations has been introduced. In this manuscript,
we discuss the finite-temperature phase diagram obtained by
large scale simulations of a closely related model. Our sim-

ulations provide numerically exact, unbiased results, which,
when extrapolated to the thermodynamic limit, are highly
reminiscent of the behavior of many unconventional super-
conductors. In the vicinity of the magnetic quantum phase
transition (see Fig. 1), we find a d-wave superconducting
dome with a maximum T

c

of the order of E
F

/30, where E
F

is the Fermi energy. Above T
c

, there is a substantial regime of
strong superconducting fluctuations which is seen in a large
diamagnetic response and in a reduction of the tunneling den-
sity of states. In the superconducting state we find a region of
possible coexistence with SDW order [27].

In addition to SC order, we have examined CDW and PDW
ordering tendencies near the magnetic quantum phase transi-
tion (QPT). While the CDW susceptibility shows a moderate
enhancement in the vicinity of the QPT, there is no sign of a
near-degeneracy between the SC and CDW order parameters
as the QPT is approached. Finally, the low-temperature super-
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FIG. 1. (Color online) Phase diagram of model (1) showing the tran-
sition temperature T

SDW

to magnetic spin density wave (SDW) or-
der, the superconducting T

c

, and the onset of diamagnetism at T
dia

.
The solid lines indicate a Berezinskii-Kosterlitz-Thouless transition.
The SDW transition inside the SC dome, marked by a dashed line,
possibly is a weakly first-order transition (see the main text).
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Abstract
In the conventional theory of density wave ordering in metals, the onset of spin density wave (SDW)

order co-incides with the reconstruction of the Fermi surfaces into small ‘pockets’. We present models

which display this transition, while also displaying an alternative route between these phases via an

intermediate phase with topological order, no broken symmetry, and pocket Fermi surfaces. The models

involve coupling emergent gauge fields to a fractionalized SDW order, but retain the canonical electron

operator in the underlying Hamiltonian. We establish an intimate connection between the suppression

of certain defects in the SDW order, and the presence of Fermi surface sizes distinct from the Luttinger

value in Fermi liquids. We discuss the relevance of such models to the physics of the hole-doped cuprates

near optimal doping.
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insulator with Néel order present in the Hertz model.

A. Easy-plane model

The most transparent introduction to our models is obtained by focusing on the case in which

the spin density wave order parameter is restricted to lie in the x-y plane in spin space. Such

a restriction can only arise from spin-orbit couplings, which are known to be rather weak in the

cuprates. Nevertheless, we will describe this case first because of its simplicity.

1. Hertz theory

The Hertz theory for the onset of SDW order can be described by the following Hamiltonian

Hsdw = H
c

+H
✓

+H
Y

, (1.1)

where H
c

describes electrons (of density (1 � p)) hopping on the sites of a square lattice

H
c

= �
X

i,j

(t
ij

+ µ�
ij

) c†
i↵

c
j↵

(1.2)

with c
i↵

the electron annihilation operator on site i with spin ↵ =", #. We represent the SDW

order by a lattice XY rotor model, described by an angle ✓
i

, and its canonically conjugate number

operator N
i

, obeying

H
✓

= �
X

i<j

J
ij

cos(✓
i

� ✓
j

) + 4�
X

i

N2
i

; [✓
i

, N
j

] = i�
ij

, (1.3)

where J
ij

positive exchange constants, and � is proportional to the bare spin-wave gap (the 4 is for

future convenience). A term linear in N
i

is also allowed in H
✓

, but we ignore it for simplicity; such

a linear term will not be allowed when we consider models with SU(2) symmetry in Section IV.

Finally, there is a ‘Yukawa’ coupling between the XY order parameter, ei✓, and the fermions

H
Y

= ��
X

i

⌘
i

h
e�i✓

ic†
i"ci# + ei✓ic†

i#ci"

i
, (1.4)

where

⌘
i

⌘ (�1)xi

+y

i (1.5)

is the staggering factor representing the opposite spin orientations on the two sublattices. Note

that the Yukawa coupling, and the remaining Hamiltonian, commute with the total spin along the

z direction

S
z

=
X

i

✓
N

i

+
1

2
c†
i"ci" � 1

2
c†
i#ci#

◆
. (1.6)
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to realizing nearly-free  ± fermions in a regime where
⌦
ei✓

↵
= 0. The phase with no XY order

described byHsdw has proliferating 2⇡ vortices in the SDW order, and the half-angle transformation

in Eq. (1.7) shows that  ± are not single-valued around such vortices. So the  ± fermions must

be confined at the same point where the XY order disappears. In other words, we are back to the

conventional scenario in which Fermi surface reconstruction and XY ordering co-incide.

But the above argument also suggests a route around such an obstacle: the  ± fermions are

single-valued around doubled 4⇡ vortices, and so we need the disappearance of XY order to be

associated with the proliferation of doubled vortices.

There is a simple route to the loss of XY order by doubled vortices that has been much studied

in the literature [28–31]: it involves coupling the square-root of the XY order, the ‘spinon’ field

ei✓/2, to a Z2 gauge field. The model we wish to study is obtained by replacing H
✓

in Hsdw by

the model studied in Refs. 28 and 29. In this manner, we obtain the Hamiltonian (written out

completely because of our focus on it in this paper)

H1 = H
c

+H
✓,Z2 +H

Y

H
c

= �
X

i,j

(t
ij

+ µ�
ij

) c†
i↵

c
j↵

H
Y

= ��
X

i

⌘
i

h
e�i✓

ic†
i"ci# + ei✓ic†

i#ci"

i

H
✓,Z2 = �

X

i<j

J
ij

µz

ij

cos ((✓
i

� ✓
j

)/2) + 4�
X

i

N2
i

� g
X

hiji

µx

ij

� K
X

⇤

"
Y

⇤
µz

ij

#
, (1.9)

where µx,z are Pauli matrices on the links of the square lattice representing the Z2 gauge field. The

forms of H
c

and H
Y

are the same as those in the Hertz theory, and only the action for the spin

density wave order has been modified by terms that are e↵ectively multi-spin exchange interactions.

(It will become clear from our discussion later that at p = 0 and small �, H1 reduces to the model

studied in Ref. 31.) The Hamiltonian H1 is invariant under the Z2 gauge transformation

ei✓i/2 ! s
i

ei✓i/2 , µz

ij

! s
i

µz

ij

s
j

, (1.10)

where s
i

= ±1 is an arbitrary function of i, and the other operators remain invariant. Associated

with this gauge invariance is the existence of an extensive number of conserved charges, Ĝ
i

, which

commute with H1 and obey Ĝ2
i

= 1; we restrict our attention to the sector of the Hilbert space in

which all the Ĝ
i

= 1:

Ĝ
i

⌘ e2i⇡N̂i

Y

j2n.n.(i)

µx

ij

= 1, (1.11)

where j extends over the nearest-neighbors of i.

The main term driving the appearance of exotic phases in H1 is the K term, which penalizes

configurations with non-zero Z2 gauge flux. For small K, we can trace over the Z2 gauge field in

6
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FIG. 1. Schematic, minimal, phase diagram of the easy-plane Hamiltonian H1 in Eq. (1.9). The vortices

are the usual defects in the XY SDW order. We propose that with increasing doping, the electron-doped

cuprates follow a path similiar to B-A, while the hole-doped cuprates follow a path similar to B-C-A. The

Fermi surfaces are shown in the first Brillouin zone: those in A and B are of electrons, while those in

C can be either of electrons or chargons. In phase C, the single vortices in the SDW order are gapped

excitations, identified as the visons of the Z2 topological order. The sketched Fermi surfaces are for hole-

doping with the cuprate band structure: in phases B and C only hole pockets are shown, but electron

pockets will appear near the boundaries to phase A.

In other words, the  ± fermions move in the presence of a spacetime-independent XY order, even

though the actual orientation of the XY order rotates from point to point. If we realize a situation

in which the  ± fermions are approximately free, then their observation of constant XY order

implies that they will form small pocket Fermi surfaces (or be fully gapped at p = 0). From (1.6),

it can be verified that the  ± fermions have S
z

= 0, and so these are spinless fermions which carry

only the charge of the electron: we will refer to them as ‘chargons’ in the remaining discussion.

A metallic phase with chargon Fermi surfaces was called an ‘algebraic charge liquid’ (ACL) in

Ref. 27.

However, further thought based upon the structure of (1.7) shows that there is a crucial obstacle
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Evidence for pseudogap metal as ACL/FL* 
• FL* Fermi pockets are compatible with photoemission at high T .

• Optical conductivity ⇠ 1/(�i! + 1/⌧) with
1/⌧ ⇠ !2 + T 2, with carrier density p (Mirzaei et al., PNAS 110,
5774 (2013)).

• Magnetoresistance ⇢xx ⇠ ⌧�1
�
1 + aH2T 2

�
with ⌧ ⇠ T�2 (Chan

et al., PRL 113, 177005 (2014).

• Charge density wave instabilities of FL* have wave vector and
form-factors which agree with STM/X-ray observations in DW
region (D. Chowdhury and S. Sachdev, PRB 90, 245136 (2014)).

• T -independent positive Hall co-e�cient, RH , corresponding to car-
rier density p in the higher temperature pseudogap (Ando et al.,
PRL 92, 197001 (2004)) and in recent measurements at high fields,
low T , and around p ⇡ 0.16 in YBCO (Badoux et al., Nature 531,
210 (2016)).



“Back side” of Fermi surface is suppressed for observables 
which change electron number in the square lattice 

Y. Qi and S. Sachdev,
Phys. Rev. B 81, 115129 (2010)

M. Punk, A. Allais, and S. Sachdev, 
PNAS 112, 9552 (2015) 
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• FL* Fermi pockets are compatible with photoemission at high T .

• Optical conductivity ⇠ 1/(�i! + 1/⌧) with
1/⌧ ⇠ !2 + T 2, with carrier density p (Mirzaei et al., PNAS 110,
5774 (2013)).

• Magnetoresistance ⇢xx ⇠ ⌧�1
�
1 + aH2T 2

�
with ⌧ ⇠ T�2 (Chan

et al., PRL 113, 177005 (2014).

• Charge density wave instabilities of FL* have wave vector and
form-factors which agree with STM/X-ray observations in DW
region (D. Chowdhury and S. Sachdev, PRB 90, 245136 (2014)).

• T -independent positive Hall co-e�cient, RH , corresponding to car-
rier density p in the higher temperature pseudogap (Ando et al.,
PRL 92, 197001 (2004)) and in recent measurements at high fields,
low T , and around p ⇡ 0.16 in YBCO (Badoux et al., Nature 531,
210 (2016)).
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Quantum critical point at optimal doping

• Transition is primarily “topological”. Main change

is in the size of the Fermi surface.

• Symmetry-breaking and Landau order parameters

appear to play a secondary role.

• The main symmetry breaking which appears co-incident

with the transition is Ising-nematic ordering. But

this symmetry cannot change the size of the Fermi

surface; similar comments apply to time-reversal sym-

metry.

• Need a gauge theory for transition from “topological”

to “confined” state.
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Mean field theory of a 
non-Fermi liquid
(“strange metal”)



H =
1

(N)1/2

NX

i,j=1

tijc
†
i cj + . . .

cicj + cjci = 0 , cic
†
j + c†jci = �ij

1

N

X

i

c†i ci = Q

Fermions occupying the eigenstates of a 
N x N random matrix

tij are independent random variables with tij = 0 and |tij |2 = t2

Infinite-range model with quasiparticles



Feynman graph expansion in tij.., and graph-by-graph average,

yields exact equations in the large N limit:

G(i!) =
1

i! + µ� ⌃(i!)
, ⌃(⌧) = t2G(⌧)

G(⌧ = 0

�
) = Q.

G(!) can be determined by solving a quadratic equation.

!

�ImG(!)

µ

Infinite-range model with quasiparticles



Infinite-range model with quasiparticles

Fermi liquid state: Two-body interactions lead to a scattering time

of quasiparticle excitations from in (random) single-particle eigen-

states which diverges as ⇠ T�2
at the Fermi level.

Now add weak interactions

H =
1

(N)1/2

NX

i,j=1

tijc
†
i cj +

1

(2N)3/2

NX

i,j,k,`=1

Jij;k` c
†
i c

†
jckc`

Jij;k` are independent random variables with Jij;k` = 0 and |Jij;k`|2 = J2. We
compute the lifetime of a quasiparticle, ⌧↵, in an exact eigenstate  ↵(i) of the
free particle Hamitonian with energy E↵. By Fermi’s Golden rule, for E↵ at the
Fermi energy

1

⌧↵
= ⇡J2⇢20

Z
dE�dE�dE�f(E�)(1� f(E�))(1� f(E�))�(E↵ + E� � E� � E�)

=
⇡3J2⇢20

4
T 2

where ⇢0 is the density of states at the Fermi energy.
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SYK model without quasiparticles
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To obtain a non-Fermi liquid, we set tij = 0:

HSYK =

1

(2N)

3/2

NX

i,j,k,`=1

Jij;k` c
†
i c

†
jckc` � µ

X

i

c†i ci

Q =

1

N

X

i

c†i ci

HSYK is similar, and has identical properties, to a related model

proposed by SY in 1993.
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HSYK is similar, and has identical properties, to a related model

proposed by SY in 1993.

A fermion can move only
by entangling with another
fermion: the Hamiltonian
has “nothing but
entanglement”.



S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

SYK model without quasiparticles

Feynman graph expansion in Jij.., and graph-by-graph average,

yields exact equations in the large N limit:

G(i!) =
1

i! + µ� ⌃(i!)
, ⌃(⌧) = �J2G2

(⌧)G(�⌧)

G(⌧ = 0

�
) = Q.

Low frequency analysis shows that the solutions must be gapless

and obey

⌃(z) = µ� 1

A

p
z + . . . , G(z) =

Ap
z

for some complex A. The ground state is a non-Fermi liquid, with

a continuously variable density Q.



W. Fu and S. Sachdev, arXiv: 1603.05246

SYK model without quasiparticles

A better understanding of the above facts can be reached from the perspective of symmetry-

protected topological (SPT) phases. As shown recently in Ref. 14, the complex SYK model can be

thought of as the boundary of a 1D SPT system in the symmetry class AIII. The periodicity of 4

in N arises from the fact that we need to put 4 chains to gap out the boundary degeneracy without

breaking the particle-hole symmetry. In the Majorana SYK case, the symmetric Hamiltonian can

be constructed as a symmetric matrix in the Cli↵ord algebra Cl0,N�1, and the Bott periodicity

in the real representation of the Cli↵ord algebra gives rise to a Z8 classification[14]. Here, for

the complex SYK case, we can similarly construct the Cli↵ord algebra by dividing one complex

fermion into two Majorana fermions, and then we will have a periodicity of 4.

A. Green’s function

From the above definition of retarded Green’s function, we can relate them to the imaginary

time Green’s function as defined in Eq. (16), GR(!) = G(i!n ! ! + i⌘). In Fig. 3, we show a
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FIG. 3. Imaginary part of the Green’s function in real frequency space from large N and exact diagonal-

ization. The inset figure is zoomed in near ! = 0.

.

comparison between the imaginary part of the Green’s function from large N , and from the exact

diagonalization computation. The spectral function from ED is particle-hole symmetric for all N ,

11

We identify the infinite time limit of GB as the Edward-Anderson order parameter qEA, which can

characterize long-time memory of spin-glass:

qEA = lim
t!1

GB(t) (49)

Then qEA 6= 0 indicates that GB(!) ⇠ �(!). This is quite di↵erent from the fermionic case, where

we have GF (z) ⇠ 1/
p
z; this inverse square-root behavior also holds in the bosonic case without

spin glass order [1]. Fig. 10 is our result from ED, with a comparison between GB with GF . It is

evident that the behavior of GB is qualitatively di↵erent from GF , and so an inverse square-root

behavior is ruled out. Instead, we can clearly see that, as system size gets larger, GB’s peak value

increases much faster than the GF ’s peak value. This supports the presence of spin glass order.
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FIG. 10. Imaginary part of Green’s function for hardcore boson and fermion model. The peak near the

center gets much higher in the boson model when system size gets larger. The inset figure is zoomed in

near ! = 0.

Unlike the fermionic case, P 2 = 1 for allN in the bosonic model. We can apply similar symmetry

argument as in Ref. [14]: for the half-filled sector (only in even N cases), the level statistics obeys

the Wigner-Dyson distribution of Gaussian orthogonal random matrix ensembles, while in other

filling sectors, it obeys distribution of Gaussian unitary random matrix ensembles.

Our thermal entropy results for bosons are similar to the fermionic results: although the entropy

eventually approaches 0 at zero temperature, there is still a trend of a larger low temperature

entropy residue as the system size gets larger.

18

Large N solution of equations for G and ⌃ agree well with exact diagonal-
ization of the finite N Hamiltonian.

However, exact diagonalization of the same model with hard-core bosons
indicates the presence of spin-glass order in the ground state.



A. Georges, O. Parcollet, and S. Sachdev  Phys. Rev. B 63, 134406 (2001)  
J. Maldacena and D. Stanford, arXiv:1604.07818 

SYK model without quasiparticles

The entropy per site, S, has a non-zero limit as T ! 0. This is not due to

an extensive degeneracy, but due to an energy level spacing ⇠ e�aN
in the

entire many-body spectrum all the way down to the ground state. At low

T we write

S(T ! 0) = S0 + �T + . . .

where the specific heat is C = �T , and S0 obeys

dS0

dQ = 2⇡E ,

with E a spectral asymmetry parameter, which is a known function of Q. E
fully determines the Green’s function at low T and ! as a ratio of Gamma

functions.

Note that S0 and E involve low-lying states, while Q de-

pends upon all states, and details of the UV structure.



A. Georges and O. Parcollet
PRB 59, 5341 (1999) 

A. Kitaev, unpublished
S. Sachdev, PRX 5, 041025 (2015)

Infinite-range (SYK) model without quasiparticles
After integrating the fermions, the partition function can be writ-

ten as a path integral with an action S analogous to a Luttinger-

Ward functional

Z =

Z
DG(⌧1, ⌧2)D⌃(⌧1, ⌧2) exp(�NS)

S = ln det [�(⌧1 � ⌧2)(@⌧1 + µ)� ⌃(⌧1, ⌧2)]

+

Z
d⌧1d⌧2⌃(⌧1, ⌧2)

⇥
G(⌧2, ⌧1) + (J2/2)G2

(⌧2, ⌧1)G
2
(⌧1, ⌧2)

⇤

At frequencies ⌧ J , the time derivative in the determinant is less

important, and without it the path integral is invariant under the

reparametrization and gauge transformations

⌧ = f(�)

G(⌧1, ⌧2) = [f 0
(�1)f

0
(�2)]

�1/4 g(�1)

g(�2)
G(�1,�2)

⌃(⌧1, ⌧2) = [f 0
(�1)f

0
(�2)]

�3/4 g(�1)

g(�2)
⌃(�1,�2)

where f(�) and g(�) are arbitrary functions.



Infinite-range (SYK) model without quasiparticles

J. Maldacena and D. Stanford, arXiv:1604.07818
See also  A. Kitaev, unpublished, and  J. Polchinski and  V. Rosenhaus, arXiv:1601.06768

Let us write the large N saddle point solutions of S as

Gs(⌧1 � ⌧2) ⇠ (⌧1 � ⌧2)
�1/2 , ⌃s(⌧1 � ⌧2) ⇠ (⌧1 � ⌧2)

�3/2.

These are not invariant under the reparametrization symmetry but are in-

variant only under a SL(2,R) subgroup under which

f(⌧) =
a⌧ + b

c⌧ + d
, ad� bc = 1.

So the (approximate) reparametrization symmetry is spontaneously broken.

Reparametrization zero mode

Expand about the saddle point by writing

G(⌧1, ⌧2) = [f 0
(⌧1)f

0
(⌧2)]

1/4Gs(f(⌧1)� f(⌧2))

(and similarly for ⌃) and obtain an e↵ective action for f(⌧). This action

does not vanish because of the time derivative in the determinant which is

not reparameterization invariant.



Infinite-range (SYK) model without quasiparticles

J. Maldacena and D. Stanford, arXiv:1604.07818
See also  A. Kitaev, unpublished, and  J. Polchinski and  V. Rosenhaus, arXiv:1601.06768

The Schwarzian e↵ective action implies that the

SYK model saturates a lower bound on a Lya-

punov time for many-body quantum chaos: this is

time over which the quantum system loses mem-

ory of its initial state (the “butterfly e↵ect”)

⌧L =

1

2⇡

~
kBT

However the e↵ective action must vanish for SL(2,R) transforma-
tions because Gs,⌃s are invariant under it. In this manner we
obtain the e↵ective action as a Schwarzian

NSe↵ = �N�

4⇡2

Z
d⌧ {f, ⌧} , {f, ⌧} ⌘ f 000

f 0 � 3

2

✓
f 00

f 0

◆2

,

where the specific heat, C = �T .



Infinite-range (SYK) model without quasiparticles

J. Maldacena and D. Stanford, arXiv:1604.07818
See also  A. Kitaev, unpublished, and  J. Polchinski and  V. Rosenhaus, arXiv:1601.06768

The Schwarzian describes fluctuations of the energy operator with

scaling dimension h = 2.

Apart from the energy operator associated with the Schwarzian,

there are an infinite number of other scalar operators with irrational

scaling dimensions given by the roots of

tan

✓
⇡(2h� 1)

4

◆
=

1� 2h

3

) h = 3.77354 . . . , 5.67946 . . . , 7.63197 . . . , 9.60396 . . . , . . .
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We show that there is a close correspondence between the physical properties of holographic metals

near charged black holes in anti–de Sitter (AdS) space, and the fractionalized Fermi liquid phase of the

lattice Anderson model. The latter phase has a ‘‘small’’ Fermi surface of conduction electrons, along with

a spin liquid of local moments. This correspondence implies that certain mean-field gapless spin liquids

are states of matter at nonzero density realizing the near-horizon, AdS2 ! R2 physics of Reissner-

Nordström black holes.

DOI: 10.1103/PhysRevLett.105.151602 PACS numbers: 11.25.Tq, 75.10.Kt, 75.30.Mb

There has been a flurry of recent activity [1–10] on the
holographic description of metallic states of nonzero den-
sity quantum matter. The strategy is to begin with a
strongly interacting conformal field theory (CFT) in the
ultraviolet (UV), which has a dual description as the
boundary of a theory of gravity in anti–de Sitter (AdS)
space. This CFT is then perturbed by a chemical potential
(!) conjugate to a globally conserved charge, and the
infrared (IR) physics is given a holographic description
by the gravity theory. For large temperatures T " !, such
an approach is under good control, and has produced a
useful hydrodynamic description of the physics of quan-
tum criticality [11]. Much less is understood about the low
temperature limit T # !: a direct solution of the classical
gravity theory yields boundary correlation functions de-
scribing a non-Fermi liquid metal [4], but the physical
interpretation of this state has remained obscure. It has a
nonzero entropy density as T ! 0, and this raises concerns
about its ultimate stability.

This Letter will show that there is a close parallel
between the above theories of holographic metals, and a
class of mean-field theories of the ‘‘fractionalized Fermi
liquid’’ (FFL) phase of the lattice Anderson model.

The Anderson model (specified below) has been a popu-
lar description of intermetallic transition metal or rare-
earth compounds: it describes itinerant conduction elec-
trons interacting with localized resonant states represent-
ing d (or f) orbitals. The FFL is an exotic phase of the
Anderson model, demonstrated to be generically stable in
Refs. [12,13]; it has a ‘‘small’’ Fermi surface whose vol-
ume is determined by the density of conduction electrons
alone, while the d electrons form a fractionalized spin
liquid state. The FFL was also found in a large spatial
dimension mean-field theory by Burdin et al. [14], and is
the ground state needed for a true ‘‘orbital-selective Mott
transition’’ [15]. The FFL should be contrasted from the
conventional Fermi liquid (FL) phase, in which there is a
‘‘large’’ Fermi surface whose volume counts both the con-
duction and d electrons: the FL phase is the accepted de-
scription of many ‘‘heavy fermion’’ rare-earth intermetal-

lics. However, recent experiments on YbRh2ðSi0:95Ge0:05Þ2
have observed an unusual phase for which the FFL is an
attractive candidate [16].
Here, we will describe the spin liquid of the FFL by the

gapless mean-field state of Sachdev and Ye [17] (SY). We
will then find that physical properties of the FFL are
essentially identical to those of the present theories of
holographic metals. Similar comments apply to other gap-
less quantum liquids [18] which are related to the SY state.
This agreement implies that nonzero density matter de-
scribed by the SY (or a related) state is a realization of the
near-horizon, AdS2 ! R2 physics of Reissner-Nordström
black holes.
We begin with a review of key features of the present

theory of holographic metals. The UV physics is holo-
graphically described by a Reissner-Nordström black
hole in AdS4. In the IR, the low-energy physics is captured
by the near-horizon region of the black hole, which has a
AdS2 ! R2 geometry [4]. The UV theory can be written as
a SUðNcÞ gauge theory, but we will only use gauge-
invariant operators to describe the IR physics. We use a
suggestive condensed matter notation to represent the IR,
anticipating the correspondence we make later. We probe
this physics by a ‘‘conduction electron’’ ck" (where k is a
momentum and " ¼" , # a spin index), which will turn out
to have a Fermi surface at a momentum k ' jkj ¼ kF. The
IR physics of this conduction electron is described by the
effective Hamiltonian [4,7]

H ¼ H0 þH1½d; c* þHAdS (1)

H0 ¼
X

"

Z d2k

4#2 ð"k +!Þcyk"ck"; (2)

with ck" canonical fermions and "k their dispersion, and

H1½d; c* ¼
X

"

Z d2k

4#2 ½Vkd
y
k"ck" þ V,

kc
y
k"dk"*; (3)

with Vk a ‘‘hybridization’’ matrix element. The dk" are
nontrivial operators controlled by the strongly coupled IR
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S. Sachdev, PRL 105, 151602 (2010)

S. Sachdev, PRX 5, 041025 (2015)

• The non-zero T ! 0 entropy density, S0, matches the Bekenstein-
Hawking-Wald entropy density of extremal AdS2 horizons, and the
dependence of the fermion Green’s function on !, T , and E , matches
that of a Dirac fermion in AdS2 (as computed by T. Faulkner, Hong
Liu, J. McGreevy, and D. Vegh, PRD 83, 125002 (2011)).

• More recently, it was noted that the relation dS0/dQ = 2⇡E also
matches between SYK and gravity, where E , the electric field on the
horizon, also determines the spectral asymmetry of the Dirac fermion.
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T.G. Mertens, and H. Verlinde, arXiv:1606.03438; A. Almheiri and B. Kang, arXiv: 1606.04108

The same Schwarzian e↵ective action describes low energy

fluctuations on the boundary theory of gravity theories with

AdS2 near-horizon geometries (including the AdS-Reissner-

Nordstrom solution of Einstein-Maxwell theory in 4 space-

time dimensions). And the co-e�cient of the Schwarzian,

N�/4⇡2
, determines the specific heat C = �T .
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The Schwarzian e↵ective action implies that both the SYK

model and the AdS2 theories saturate the lower bound on the

Lyapunov time

⌧L =

1

2⇡

~
kBT

.


