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• Consider a continuum quantum system with a globally
conserved U(1) charge Q (the “electron density”) in
spatial dimension d > 1.

• We are interested in zero temperature phases where
�Q� varies smoothly as a function of any external pa-
rameter µ (the “chemical potential”). For simplicity,
we assume µ couples linearly to Q.

• We will also restrict our attention to phases where this
global U(1) symmetry is not spontaneously broken,
and translational symmetry is preserved.

Compressible quantum matter
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Compressible quantum matter
• Consider a continuum quantum system with a globally

conserved U(1) charge Q (the “electron density”) in
spatial dimension d > 1.

• We are interested in zero temperature phases where
�Q� varies smoothly as a function of any external pa-
rameter µ (the “chemical potential”). For simplicity,
we assume µ couples linearly to Q.

• We will also restrict our attention to phases where this
global U(1) symmetry is not spontaneously broken,
and translational symmetry is preserved.

There are only a few established examples of such phases in 
condensed matter physics. 

However,  they appear naturally as duals of gravitational 
theories, and we want to interpret them in the gauge theory. 
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Compressible quantum matter
• Consider a continuum quantum system with a globally

conserved U(1) charge Q (the “electron density”) in
spatial dimension d > 1.

• We are interested in zero temperature phases where
�Q� varies smoothly as a function of any external pa-
rameter µ (the “chemical potential”). For simplicity,
we assume µ couples linearly to Q.

• We will also restrict our attention to phases where this
global U(1) symmetry is not spontaneously broken,
and translational symmetry is preserved.

All known examples of such phases have a 
Fermi Surface

(even in systems with only bosons in the Hamiltonian)
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The Fermi surface

Area A

This is the locus of zero energy singularities in momentum space
in the two-point correlator of fermions carrying charge Q.

G−1
fermion(k = kF ,ω = 0) = 0.

Luttinger relation: The toal “volume (area)” A enclosed by
Fermi surfaces of fermions carrying charge Q is equal to �Q�. This
is a key constraint which allows extrapolation from weak to strong
coupling.
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1.  The Fermi liquid (FL)

2.  Fermions coupled to gauge fields

3.  Fermion-boson mixtures

4.  The fractionalized Fermi liquid (FL*)

5.  Theories similar to N = 4 SYM

6.  Theories similar to ABJM
  

Examples of compressible phases 
and their Fermi surfaces
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L = f (∂a − µδat) γ
af + 4 Fermi terms

Most common example: electrons with short-range interactions
(or screened long-range interactions), which are adiabatically con-
nected to the non-interacting limit. The electron Green’s function
Gf has a pole which crosses zero energy at k = kF , and the Fermi
surface has the same area as the non-interacting case.

The Fermi Liquid (FL)
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L = f (∂a − µδat) γ
af + 4 Fermi terms

Most common example: electrons with short-range interactions
(or screened long-range interactions), which are adiabatically con-
nected to the non-interacting limit. The electron Green’s function
Gf has a pole which crosses zero energy at k = kF , and the Fermi
surface has the same area as the non-interacting case.

The Fermi Liquid (FL)

A

A =
�
fγtf

�
= �Q�

Gf =
1

ω − vF (k − kF ) + iω2
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L = f (∂a − µδat) γ
af

• Couple fermions to a dynamical gauge field Aa.

• Longitudinal gauge fluctuations are screened by the fermions.
But transverse gauge fluctuations remain unscreened, and are
Landau-damped by excitations near the Fermi surface. The
theory of a Fermi surface coupled to transverse gauge fluctua-
tions is strongly coupled in two spatial dimensions.

• The overdamped transverse gauge modes lead to “non-Fermi
liquid” broadening of the fermion pole near the Fermi surface.

Friday, February 25, 2011



• Couple fermions to a dynamical gauge field Aa.

• Longitudinal gauge fluctuations are screened by the fermions.
But transverse gauge fluctuations remain unscreened, and are
Landau-damped by excitations near the Fermi surface. The
theory of a Fermi surface coupled to transverse gauge fluctua-
tions is strongly coupled in two spatial dimensions.

• The overdamped transverse gauge modes lead to “non-Fermi
liquid” broadening of the fermion pole near the Fermi surface.

L = f (∂a − iAµσ
z − µδat) γ

af
(σz: a ‘flavor’ index to make gauge and global charges “orthogonal”)

Friday, February 25, 2011
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• Longitudinal gauge fluctuations are screened by the fermions.
But transverse gauge fluctuations remain unscreened, and are
Landau-damped by excitations near the Fermi surface. The
theory of a Fermi surface coupled to transverse gauge fluctua-
tions is strongly coupled in two spatial dimensions.

• The overdamped transverse gauge modes lead to “non-Fermi
liquid” broadening of the fermion pole near the Fermi surface.

L = f (∂a − iAµσ
z − µδat) γ

af
(σz: a ‘flavor’ index to make gauge and global charges “orthogonal”)

S.-S. Lee, Phys. Rev. B 80, 165102 (2009)
M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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A =
�
fγtf

�
= �Q�

A

L = f (∂a − µδat) γ
af
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• The location of the Fermi surfaces is well defined,
and the Luttinger relation applies as before.

• Fluctuations near the Fermi surface are described
by a strongly-coupled two-patch theory. Ward
identities allow consistent matching of the patches,
and patches along different directions decouple in
the low energy limit.

• The singularity of the Green’s function upon ap-
proaching the Fermi surface is described by the
scaling form

G−1
f = q1−ηF (ω/qz/2)

where qx = kx − kF , qy = ky, and q = qx + q2y,
and η and z are anomalous exponents.

L = f (∂a − iAµσ
z − µδat) γ

af

AA

A =
�
fγtf

�
= �Q�

(σz: a ‘flavor’ index to make gauge and global charges “orthogonal”)
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A =
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�
= �Q�

A

L = f (∂a − iAµσ
z − µδat) γ

af
S.-S. Lee, Phys. Rev. B 80, 165102 (2009)

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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Consider mixture of fermions f and bosons b.
There is a U(1)×Ub(1) symmetry
and 2 conserved charges:

L =f (∂a − µδat) γ
af

+ |(∂a − µbδat)b|2 + s|b|2 + short-range interactions . . .
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Consider mixture of fermions f and bosons b.
There is a U(1)×Ub(1) symmetry
and 2 conserved charges:

Q = fγtf

Qb = b
↔
∂t b

The 2 symmetries imply 2

Luttinger constraints. How-

ever, bosons at non-zero den-

sity invariably Bose condense

at T = 0, and so Ub(1) is

broken. So there is only the

single constraint on the f Fermi

surface. This describes mix-

tures of
3
He and

4
He.

L =f (∂a − µδat) γ
af

+ |(∂a − µbδat)b|2 + s|b|2 + short-range interactions . . .
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Consider mixture of fermions f and bosons b.
There is a U(1)×Ub(1) symmetry
and 2 conserved charges:

A = �Q�

Superfluid: �b� �= 0
Ub(1) broken
U(1) unbroken

Q = fγtf

Qb = b
↔
∂t b

L =f (∂a − µδat) γ
af

+ |(∂a − µbδat)b|2 + s|b|2 + short-range interactions . . .
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L = c (∂a − (µ+ µb)δat) γ
ac+ f (∂a − µδat) γ

af

+ |(∂a − µbδat)b|2 + s|b|2 + λ(cfb+ c.c.) + . . .

f
c

b

Suppose the boson b fermion f can bind
into a ‘molecule’, the fermion c.

Q = fγtf + c γtc

Qb = b
↔
∂t b+ c γtc

S. Powell, S. Sachdev, and H. P. Büchler, Physical Review B 72, 024534 (2005)
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Ac Af

The b bosons
have bound
with f fermions
to form c
“molecules”

In a phase with Ub(1) unbroken, there is a Luttinger rela-

tion for each conserved U(1) charge. However, the boson,

b cannot have a Fermi surface in its Green’s function, and

so there is no area associated with it, although the boson

density is included in the Luttinger relation

Ac +Af = �c γtc�+
�
fγtf

�
= �Q�

Ac = �cγtc�+ �b
↔
∂t b� = �Qb�

S. Powell, S. Sachdev, and H. P. Büchler, Physical Review B 72, 024534 (2005)
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s

Phase diagram of boson-fermion mixture

A = �Q�

S. Powell, S. Sachdev, and H. P. Büchler, Physical Review B 72, 024534 (2005)

Superfluid: �b� �= 0
Ub(1) broken
U(1) unbroken

Normal: �b� = 0
U(1)×Ub(1) unbroken

Ac = �Qb� Af = �Q−Qb�

L = c (∂a − (µ+ µb)δat) γ
ac+ f (∂a − µδat) γ

af

+ |(∂a − µbδat)b|2 + s|b|2 + λ(cfb+ c.c.) + . . .
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• Now gauge Q−Qb by a dynamic gauge field Aa.
This leaves fermion c gauge-invariant

L = c (∂a − (µ+ µb)δat) γ
ac+ f (∂a − µδat) γ

af

+ |(∂a − µbδat)b|2 + s|b|2 + λ(cfb+ c.c.) + . . .
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L = c (∂a − (µ+ µb)δat) γ
ac+ f (∂a − iAa + µδat) γ

af

+ |(∂a + iAa − µbδat)b|2 + s|b|2 + λ(cfb+ c.c.) + . . .

(Need a background neutralizing charge)

• Now gauge Q−Qb by a dynamic gauge field Aa.
This leaves fermion c gauge-invariant
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Phase diagram of boson-fermion mixture

A = �Q�

S. Powell, S. Sachdev, and H. P. Büchler, Physical Review B 72, 024534 (2005)
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Phase diagram of U(1) gauge theory

A = �Q�

Higgs/confining phase:
Fermi liquid (FL)

T. Senthil, M. Vojta, and S. Sachdev, Physical Review B 69, 035111 (2004)

s

Deconfined phase:
Fractionalized

Fermi liquid (FL*)

L = c (∂a − (µ+ µb)δat) γ
ac+ f (∂a − iAa + µδat) γ

af

+ |(∂a + iAa − µbδat)b|2 + s|b|2 + λ(cfb+ c.c.) + . . .

Ac = �Qb� Af = �Q−Qb�
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Phase diagram of U(1) gauge theory

A = �Q�

Higgs/confining phase:
Fermi liquid (FL)

T. Senthil, M. Vojta, and S. Sachdev, Physical Review B 69, 035111 (2004)

s

Deconfined phase:
Fractionalized

Fermi liquid (FL*)

L = c (∂a − (µ+ µb)δat) γ
ac+ f (∂a − iAa + µδat) γ

af

+ |(∂a + iAa − µbδat)b|2 + s|b|2 + λ(cfb+ c.c.) + . . .

Ac = �Qb� Af = �Q−Qb�

• FL phase: Fermi surface of gauge-
neutral fermions encloses total global
charge Q

• FL* phase: Fermi surface of gauge
neutral fermions encloses only part
of the global charge Q
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• SU(N) gauge invariance and SO(6) global

symmetry

• Fermions carry adjoint gauge charges and

are SO(6) spinors

• Bosons carry adjoint gauge charges and are

SO(6) fundamentals. Bosons are paired fermions.

• N = 4 supersymmetry

N = 4 SYM in D=3+1 dimensions
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Adding a chemical potential coupling to a SO(6) 
charge breaks supersymmetry and SO(6) invariance

N = 4 SYM in D=3+1 dimensions

• SU(N) gauge invariance and SO(6) global

symmetry

• Fermions carry adjoint gauge charges and

are SO(6) spinors

• Bosons carry adjoint gauge charges and are

SO(6) fundamentals. Bosons are paired fermions.

• N = 4 supersymmetry
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• SU(N) gauge invariance and U(1) global sym-
metry

• Fermions, fα, (α = 1 . . . N2 − 1) carry adjoint
gauge charges and U(1) charge 1.

• Bosons, bα, carry adjoint gauge charges and U(1)
charge 2. Bosons are paired fα fermions.

• No supersymmetry

• Fermions, c, (analog of baryons), gauge-invariant
bound states of b and f , carry U(1) charge 3.

Theory similar to N = 4 SYM in a chemical potential
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Theory similar to N = 4 SYM in a chemical potential

Q = f†
αfα + 2b†αbα + 3c†c

Hf =
�

k,a

k
2

2m3
f
†
αfα − µ

�

k

�
�

α

f
†
αfα + 2

�

α

b
†
αbα + 3c†c

�

Hb =
�

k,α

�
k
2

2m1
+ ε1

�
b
†
αbα + u

�
d
d
x
�
b
†
αbα

�2

Hc =
�

k

�
k
2

2m2
+ ε2

�
c
†
c

Hint = g

�
d
d
x
�
�αβγb

†
αfβfγ + c.c.

�
+ λ

�
d
d
x
�
c
†
bαfα + c.c.

�
,

The indices, α,β, γ = 1 . . . N2 − 1, the structure constants of
SU((N) are �αβγ , and ε1,2 are parameters tuning between possible
phases. The SU(N) gauge fields are not shown, and are included
as usual by covariantizing derivatives.
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Phases of  SYM-like theories 

Ac

3Ac = �Q�

Fermi liquid (FL) of baryon-like particles
SU(N) gauge theory is in confining phase

�bα� = 0
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Phases of  SYM-like theories 

Ac

Fractionalized Fermi liquid (FL*)
SU(N) gauge theory is in deconfined phase

Af

3Ac + (N2 − 1)Af = �Q�

�bα� = 0
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�bα� �= 0

Phases of  SYM-like theories 

Ac

Color Superconductor
SU(N) gauge theory is in Higgs phase

Af

No constraint on Fermi surface areas
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Phases of  SYM-like theories 

Ac

Fractionalized Fermi liquid (FL*)

Af

3Ac + (N2 − 1)Af = �Q�

�bα� = 0

S. Sachdev, Physical Review Letters 105, 151602 (2010)
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Phases of  SYM-like theories 

Ac

Fractionalized Fermi liquid (FL*)

Af

3Ac + (N2 − 1)Af = �Q�

�bα� = 0

Claim: this is the phase underlying recent holographic theories of 
compressible metallic states.

However, a number of artifacts appear in the classical gravity 
approximation.

S. Sachdev, Physical Review Letters 105, 151602 (2010)
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Phases of  SYM-like theories 

Ac

Fractionalized Fermi liquid (FL*)

Af

3Ac + (N2 − 1)Af = �Q�

�bα� = 0

The fα Fermi surface is unstable to a pairing transition to a
color superconductor, mediated by bα fluctuations and SU(N)
gauge bosons at an energy scale ∼ exp(−

√
N).

D.T. Son, Physical Review D 59, 094019 (2009)

M. Metlitski, D. Mross, S. Sachdev, T. Senthil, to appear
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1.  The Fermi liquid (FL)

2.  Fermions coupled to gauge fields

3.  Fermion-boson mixtures

4.  The fractionalized Fermi liquid (FL*)

5.  Theories similar to N = 4 SYM

6.  Theories similar to ABJM
  

Examples of compressible phases 
and their Fermi surfaces
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ABJM theory in D=2+1 dimensions

• 4N2 Weyl fermions carrying fundamental charges
of U(N)×U(N)×SU(4)R.

• 4N2 complex bosons carrying fundamental
charges of U(N)×U(N)×SU(4)R.

• N = 6 supersymmetry
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ABJM theory in D=2+1 dimensions

• 4N2 Weyl fermions carrying fundamental charges
of U(N)×U(N)×SU(4)R.

• 4N2 complex bosons carrying fundamental
charges of U(N)×U(N)×SU(4)R.

• N = 6 supersymmetry

Adding a chemical potential coupling to a SU(4) 
charge breaks supersymmetry and SU(4) invariance
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• Non-abelian gauge invariance (say U(N)×U(N))
and U(1) global symmetry

• Fermions, fα and gα, (α = 1 . . . N2) carry fun-
damental and anti-fundamental gauge charges,
and U(1) charge 1.

• Bosons, aα and bα, (α = 1 . . . N2) carry fun-
damental and anti-fundamental gauge charges,
and U(1) charge 1.

• No supersymmetry

• Fermions, c, gauge-invariant bound states of fermions
and bosons carrying U(1) charge 2.

Theory similar to ABJM
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Theory similar to ABJM

Q = aα†aα + b†αb
α + fα†fα + g†αg

α + 2c†c

Hfermion =
�

k,a

�
k
2

2m1
+ ε1 − µ

��
f
α†
fα + g

†
αg

α
�

Hboson =
�

k,a

�
k
2

2m2
+ ε2 − µ

��
a
α†
aα + b

†
αb

α
�
+ u

�
d
d
x
�
a
α†
aα + b

†
αb

α
�2

HF =
�

k

�
k
2

2m3
− 2µ

�
c
†
c

Hint = λ1

�
d
d
x

�
a
β†
b
†
βfαg

α + c.c.
�
+ λ2

�
d
d
x

�
a
α†
b
†
βfαg

β + c.c.
�

+ λ3

�
d
d
x
�
c
† (fαb

α − g
α
aα) + c.c.

�

The ε1,2 are parameters tuning between possible phases. The
U(N)×U(N) gauge fields are not shown, and are included as usual
by covariantizing derivatives.
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Phase of  ABJM-like theories 

Ac

Fractionalized Fermi liquid (FL*)
SU(N) gauge theory is in deconfined phase

Af
�aα� = 0

�bα� = 0
Ag

2Ac +N2Af +N2Ag = �Q�
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Gauge-gravity duality
and

impurity mean-field theories
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 Begin with a CFT e.g. the SYM theory with a 
SO(6) global symmetry

 The CFT is dual to a gravity theory on AdS5 x S5

Gauge-gravity duality
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 Begin with a CFT e.g. the SYM theory with a 
SO(6) global symmetry

 Add some SO(6) charge by turning on a chemical 
potential (this breaks the SO(6) symmetry)

 The CFT is dual to a gravity theory on AdS5 x S5

 In the Einstein-Maxwell theory, the chemical 
potential leads at T=0 to an extremal Reissner-
Nordtrom black hole in the AdS5 spacetime.

Gauge-gravity duality
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 Begin with a CFT e.g. the SYM theory with a 
SO(6) global symmetry

 Add some SO(6) charge by turning on a chemical 
potential (this breaks the SO(6) symmetry)

 The CFT is dual to a gravity theory on AdS5 x S5

 In the Einstein-Maxwell theory, the chemical 
potential leads at T=0 to an extremal Reissner-
Nordtrom black hole in the AdS5 spacetime.
 The near-horizon geometry of the RN black hole 
is AdS2 x R3. This factorization leads to finite 
ground state entropy density 

Gauge-gravity duality
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Features of AdS Einstein-Maxwell theory of non-zero den-
sity quantum matter, not expected in the final theory:

• Non-zero ground state entropy density.

• Single fermion self energies are momentum indepen-
dent, and their singular behavior is the same on and
off the Fermi surface.

• Low energy singularities are described by “conformal
quantum mechanics”: a 0+1 dimensional defect in a
d+1 dimensional CFT. This is linked to the factor-
ization of the near-horizon metric to AdS2 ×Rd,

AdS theory of finite density quantum matter
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Solution of lattice models

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).

A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63, 134406 (2001).

S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66, 045111 (2002)

Fully-
connected 

cluster

Bethe 
lattice for 
large co-

ordination

Place U(1) gauge theory theory on a lattice, integrate out b and

Aa, to obtain Kondo lattice Hamiltonian

H = −
�

i<j

tijc
†
iαcjα +

�

i<j

JH(i, j)�Si · �Sj + JK

�

i

�Si · c†iα�σαβciβ

where �Si = f
†
iα�σαβfβ

Friday, February 25, 2011



Solution of lattice models

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).

A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63, 134406 (2001).

S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66, 045111 (2002)

All other sites
“Impurity”

site 0

L = Limp[c0, f0] + c†0Fbulk + F †
bulkc0 + Lbulk

Has to be combined with a self-consistency condition
between correlators on the impurity and the bulk.
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S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).

A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63, 134406 (2001).

S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66, 045111 (2002)

Obtain both FL and FL* phases;
properties of the FL* phase:

• The ground state has a non-zero entropy den-
sity

• The correlations of Fbulk are local (z = ∞)

• The correlations Fbulk in time have a confor-
mal structure with scaling dimension ∆ (as
in the boundary of AdS2)

• Imposition of the self-consistency condition
between impurity and boundary yields the
scaling dimension∆ = 1, the ‘marginal Fermi
liquid’ value.
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• The ground state has a non-zero entropy den-
sity

• The correlations of Fbulk are local (z = ∞)

• The correlations Fbulk in time have a confor-
mal structure with scaling dimension ∆ (as
in the boundary of AdS2)

• Imposition of the self-consistency condition
between impurity and boundary yields the
scaling dimension∆ = 1, the ‘marginal Fermi
liquid’ value.

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).

A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63, 134406 (2001).

S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66, 045111 (2002)

Obtain both FL and FL* phases;
properties of the FL* phase:

These features, and the resulting fermion correla-

tor and transport properties, co-incide with those

obtained (for general ∆) using the holographic

AdS2× R
d
theory defined on the extremal horizon

of the Reissner-Nordstrom black hole (T. Faulkner,

H. Liu, J. McGreevy and D. Vegh, arXiv:0907.2694)

S. Sachdev, Phys. Rev. Lett. 105, 151602 (2010).
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 Compressible quantum matter is characterized by 
Fermi surfaces.

 Fermi surfaces can be removed from the Luttinger 
count if the fermions acquire gauge charges

 Phases of a strongly-coupled gauge theory: Fermi 
liquids (FL) and fractionalized Fermi liquids (FL*) 

Conclusions

Friday, February 25, 2011



 Mean field Kondo lattice models capture the 
physics of holographic metals with a AdS2 x Rd 
geometry

 Needed: Holographic theory for FL* or related 
compressible phases, without a factorized geometry.
Challenge: detect Fermi surfaces of fermions with 
gauge charges

Conclusions
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