Fermi surfaces and gauge-gravity duality

Institute for Advanced Study, Princeton, Feb 18, 2011

Lecture notes arXiv:1010.0682 arXiv:1012.0299

sachdev.physics.harvard.edu

• Consider a continuum quantum system with a globally conserved U(1) charge Q (the "electron density") in spatial dimension d > 1.

- Consider a continuum quantum system with a globally conserved U(1) charge Q (the "electron density") in spatial dimension d > 1.
- We are interested in <u>zero temperature</u> phases where $\langle Q \rangle$ varies smoothly as a function of any external parameter μ (the "chemical potential"). For simplicity, we assume μ couples linearly to Q.

- Consider a continuum quantum system with a globally conserved U(1) charge Q (the "electron density") in spatial dimension d > 1.
- We are interested in <u>zero temperature</u> phases where $\langle Q \rangle$ varies smoothly as a function of any external parameter μ (the "chemical potential"). For simplicity, we assume μ couples linearly to Q.
- We will also restrict our attention to phases where this global U(1) symmetry is not spontaneously broken, and translational symmetry is preserved.

- Consider a continuum quantum system with a globally conserved U(1) charge Q (the "electron density") in spatial dimension d > 1.
- We are interested in <u>zero temperature</u> phases where $\langle Q \rangle$ varies smoothly as a function of any external parameter μ (the "chemical potential"). For simplicity, we assume μ couples linearly to Q.
- We will also restrict our attention to phases where this global U(1) symmetry is not spontaneously broken, and translational symmetry is preserved.

There are only a few established examples of such phases in condensed matter physics. However, they appear naturally as duals of gravitational theories, and we want to interpret them in the gauge theory.

- Consider a continuum quantum system with a globally conserved U(1) charge Q (the "electron density") in spatial dimension d > 1.
- We are interested in <u>zero temperature</u> phases where $\langle Q \rangle$ varies smoothly as a function of any external parameter μ (the "chemical potential"). For simplicity, we assume μ couples linearly to Q.
- We will also restrict our attention to phases where this global U(1) symmetry is not spontaneously broken, and translational symmetry is preserved.

- Consider a continuum quantum system with a globally conserved U(1) charge Q (the "electron density") in spatial dimension d > 1.
- We are interested in <u>zero temperature</u> phases where $\langle Q \rangle$ varies smoothly as a function of any external parameter μ (the "chemical potential"). For simplicity, we assume μ couples linearly to Q.
- We will also restrict our attention to phases where this global U(1) symmetry is not spontaneously broken, and translational symmetry is preserved.

All known examples of such phases have a <u>Fermi Surface</u>

(even in systems with only bosons in the Hamiltonian)

The Fermi surface

This is the locus of zero energy singularities in momentum space in the two-point correlator of fermions carrying charge Q.

$$G_{\text{fermion}}^{-1}(k = k_F, \omega = 0) = 0.$$

Luttinger relation: The toal "volume (area)" \mathcal{A} enclosed by Fermi surfaces of fermions carrying charge \mathcal{Q} is equal to $\langle \mathcal{Q} \rangle$. This is a *key* constraint which allows extrapolation from weak to strong coupling.

- I. The Fermi liquid (FL)
- 2. Fermions coupled to gauge fields
- 3. Fermion-boson mixtures
- 4. The fractionalized Fermi liquid (FL*)
- 5. Theories similar to \mathcal{N} = 4 SYM

- I. The Fermi liquid (FL)
- 2. Fermions coupled to gauge fields
- 3. Fermion-boson mixtures
- 4. The fractionalized Fermi liquid (FL*)
- 5. Theories similar to \mathcal{N} = 4 SYM

The Fermi Liquid (FL)

Most common example: electrons with short-range interactions (or screened long-range interactions), which are adiabatically connected to the non-interacting limit. The electron Green's function G_f has a pole which crosses zero energy at $k = k_F$, and the Fermi surface has the same area as the non-interacting case.

 $\mathcal{L} = \overline{f} \left(\partial_a - \mu \delta_{at} \right) \gamma^a f + 4 \text{ Fermi terms}$

The Fermi Liquid (FL)

Most common example: electrons with short-range interactions (or screened long-range interactions), which are adiabatically connected to the non-interacting limit. The electron Green's function G_f has a pole which crosses zero energy at $k = k_F$, and the Fermi surface has the same area as the non-interacting case.

$$\mathcal{L} = \overline{f} \left(\partial_a - \mu \delta_{at} \right) \gamma^a f + 4 \text{ Fermi terms}$$

$$\mathcal{A} = \langle f \gamma^t f \rangle = \langle \mathcal{Q} \rangle$$
$$G_f = \frac{1}{\omega - v_F (k - k_F) + i\omega^2}$$

- I. The Fermi liquid (FL)
- 2. Fermions coupled to gauge fields
- 3. Fermion-boson mixtures
- 4. The fractionalized Fermi liquid (FL*)
- 5. Theories similar to \mathcal{N} = 4 SYM

I. The Fermi liquid (FL)

2. Fermions coupled to gauge fields

- 3. Fermion-boson mixtures
- 4. The fractionalized Fermi liquid (FL*)
- 5. Theories similar to \mathcal{N} = 4 SYM

• Couple fermions to a dynamical gauge field A_a .

 $\mathcal{L} = \overline{f} \left(\partial_a - \mu \delta_{at} \right) \gamma^a f$

• Couple fermions to a dynamical gauge field A_a .

$$\mathcal{L} = \overline{f} \left(\partial_a - iA_\mu \sigma^z - \mu \delta_{at} \right) \gamma^a f$$

 $(\sigma^z:$ a 'flavor' index to make gauge and global charges "orthogonal")

- Couple fermions to a dynamical gauge field A_a .
- Longitudinal gauge fluctuations are screened by the fermions. But transverse gauge fluctuations remain unscreened, and are Landau-damped by excitations near the Fermi surface. The theory of a Fermi surface coupled to transverse gauge fluctuations is strongly coupled in two spatial dimensions.

S.-S. Lee, Phys. Rev. B 80, 165102 (2009) M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

$$\mathcal{L} = \overline{f} \left(\partial_a - iA_\mu \sigma^z - \mu \delta_{at} \right) \gamma^a f$$

 $(\sigma^z:$ a 'flavor' index to make gauge and global charges "orthogonal")

- Couple fermions to a dynamical gauge field A_a .
- Longitudinal gauge fluctuations are screened by the fermions. But transverse gauge fluctuations remain unscreened, and are Landau-damped by excitations near the Fermi surface. The theory of a Fermi surface coupled to transverse gauge fluctuations is *strongly coupled in two spatial dimensions*.
- The overdamped transverse gauge modes lead to "non-Fermi liquid" broadening of the fermion pole near the Fermi surface.

$$\mathcal{L} = \overline{f} \left(\partial_a - iA_\mu \sigma^z - \mu \delta_{at} \right) \gamma^a f$$

 $(\sigma^z:$ a 'flavor' index to make gauge and global charges "orthogonal")

 $\mathcal{A} = \left\langle \overline{f} \gamma^t f \right\rangle = \left\langle \mathcal{Q} \right\rangle$

 $\mathcal{L} = \overline{f} \left(\partial_a - \mu \delta_{at} \right) \gamma^a f$

The location of the Fermi surfaces is well defined, and the Luttinger relation applies as before.

 $\mathcal{A} = \left\langle \overline{f} \gamma^t f \right\rangle = \left\langle \mathcal{Q} \right\rangle$

 $\mathcal{L} = \overline{f} \left(\partial_a - iA_\mu \sigma^z - \mu \delta_{at} \right) \gamma^a f$

 $(\sigma^z:$ a 'flavor' index to make gauge and global charges "orthogonal")

- The location of the Fermi surfaces is well defined, and the Luttinger relation applies as before.
- Fluctuations near the Fermi surface are described by a strongly-coupled two-patch theory. Ward identities allow consistent matching of the patches, and patches along different directions decouple in the low energy limit.

 $\mathcal{A} = \left\langle \overline{f} \gamma^t f \right\rangle = \left\langle \mathcal{Q} \right\rangle$

 $\mathcal{L} = \overline{f} \left(\partial_a - iA_\mu \sigma^z - \mu \delta_{at} \right) \gamma^a f$

S.-S. Lee, Phys. Rev. B 80, 165102 (2009) M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

- The location of the Fermi surfaces is well defined, and the Luttinger relation applies as before.
- Fluctuations near the Fermi surface are described by a strongly-coupled two-patch theory. Ward identities allow consistent matching of the patches, and patches along different directions decouple in the low energy limit.
- The singularity of the Green's function upon approaching the Fermi surface is described by the scaling form

$$G_f^{-1} = q^{1-\eta} F(\omega/q^{z/2})$$

where $q_x = k_x - k_F$, $q_y = k_y$, and $q = q_x + q_y^2$, and η and z are anomalous exponents.

$$\mathcal{A} = \left\langle \overline{f} \gamma^t f \right\rangle = \left\langle \mathcal{Q} \right\rangle$$

$$\mathcal{L} = \overline{f} \left(\partial_a - iA_\mu \sigma^z - \mu \delta_{at} \right) \gamma^a f$$

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

- I. The Fermi liquid (FL)
- 2. Fermions coupled to gauge fields
- 3. Fermion-boson mixtures
- 4. The fractionalized Fermi liquid (FL*)
- 5. Theories similar to \mathcal{N} = 4 SYM

- I. The Fermi liquid (FL)
- 2. Fermions coupled to gauge fields

3. Fermion-boson mixtures

- 4. The fractionalized Fermi liquid (FL*)
- 5. Theories similar to \mathcal{N} = 4 SYM

Consider mixture of fermions f and bosons b.

$$\mathcal{L} = \overline{f} \left(\partial_a - \mu \delta_{at} \right) \gamma^a f + \left| \left(\partial_a - \mu_b \delta_{at} \right) b \right|^2 + s |b|^2 + \text{short-range interactions} \dots$$

Consider mixture of fermions f and bosons b. There is a $U(1) \times U_b(1)$ symmetry and 2 conserved charges:

 $Q = \overline{f} \gamma^t f$ $Q_b = \overline{b} \stackrel{\leftrightarrow}{\partial_t} b$

$$\mathcal{L} = \overline{f} \left(\partial_a - \mu \delta_{at} \right) \gamma^a f + \left| \left(\partial_a - \mu_b \delta_{at} \right) b \right|^2 + s |b|^2 + \text{short-range interactions} \dots$$

Consider mixture of fermions f and bosons b. There is a $U(1) \times U_b(1)$ symmetry and 2 conserved charges:

The 2 symmetries imply 2 Luttinger constraints. However, bosons at non-zero density invariably Bose condense at T = 0, and so $U_b(1)$ is broken. So there is only the single constraint on the f Fermi surface. This describes mixtures of ³He and ⁴He.

 $\mathcal{Q} = \overline{f} \gamma^t f$ $\mathcal{Q}_b = \overline{b} \stackrel{\leftrightarrow}{\partial_t} b$

$$\mathcal{L} = \overline{f} \left(\partial_a - \mu \delta_{at} \right) \gamma^a f + \left| \left(\partial_a - \mu_b \delta_{at} \right) b \right|^2 + s |b|^2 + \text{short-range interactions} \dots$$

Consider mixture of fermions f and bosons b. There is a $U(1) \times U_b(1)$ symmetry and 2 conserved charges:

 $\mathcal{Q} = \overline{f} \gamma^t f$ $\mathcal{Q}_b = \overline{b} \stackrel{\leftrightarrow}{\partial_t} b$

Superfluid: $\langle b \rangle \neq 0$ U_b(1) broken U(1) unbroken

$$\mathcal{L} = \overline{f} \left(\partial_a - \mu \delta_{at} \right) \gamma^a f + \left| \left(\partial_a - \mu_b \delta_{at} \right) b \right|^2 + s |b|^2 + \text{short-range interactions} \dots$$

Suppose the boson b fermion f can bind into a 'molecule', the fermion c.

$$\mathcal{Q} = \overline{f}\gamma^{t}f + \overline{c}\gamma^{t}c$$

$$\mathcal{Q}_{b} = \overline{b}\partial_{t}b + \overline{c}\gamma^{t}c$$

$$\mathcal{L} = \overline{c} \left(\partial_a - (\mu + \mu_b) \delta_{at} \right) \gamma^a c + \overline{f} \left(\partial_a - \mu \delta_{at} \right) \gamma^a f + \left| (\partial_a - \mu_b \delta_{at}) b \right|^2 + s |b|^2 + \lambda (\overline{c} f b + \text{c.c.}) + \dots$$

S. Powell, S. Sachdev, and H. P. Büchler, *Physical Review* B 72, 024534 (2005)

In a phase with $U_b(1)$ unbroken, there is a Luttinger relation for each conserved U(1) charge. However, the boson, b cannot have a Fermi surface in its Green's function, and so there is no area associated with it, although the boson density is *included* in the Luttinger relation

$$\mathcal{A}_{c} + \mathcal{A}_{f} = \langle \overline{c} \gamma^{t} c \rangle + \langle \overline{f} \gamma^{t} f \rangle = \langle \mathcal{Q} \rangle$$
$$\mathcal{A}_{c} = \langle \overline{c} \gamma^{t} c \rangle + \langle \overline{b} \overset{\leftrightarrow}{\partial_{t}} b \rangle = \langle \mathcal{Q}_{b} \rangle$$

The b bosons have bound with f fermions to form c"molecules"

S. Powell, S. Sachdev, and H. P. Büchler, *Physical Review* B 72, 024534 (2005)

Phase diagram of boson-fermion mixture

$$\mathcal{L} = \overline{c} \left(\partial_a - (\mu + \mu_b) \delta_{at} \right) \gamma^a c + \overline{f} \left(\partial_a - \mu \delta_{at} \right) \gamma^a f + \left| \left(\partial_a - \mu_b \delta_{at} \right) b \right|^2 + s |b|^2 + \lambda (\overline{c} f b + \text{c.c.}) + \dots$$

S. Powell, S. Sachdev, and H. P. Büchler, *Physical Review* B 72, 024534 (2005)

- I. The Fermi liquid (FL)
- 2. Fermions coupled to gauge fields
- 3. Fermion-boson mixtures
- 4. The fractionalized Fermi liquid (FL*)
- 5. Theories similar to \mathcal{N} = 4 SYM

- I. The Fermi liquid (FL)
- 2. Fermions coupled to gauge fields
- 3. Fermion-boson mixtures

4. The fractionalized Fermi liquid (FL*)

5. Theories similar to \mathcal{N} = 4 SYM

• Now gauge $Q - Q_b$ by a dynamic gauge field A_a . This leaves fermion c gauge-invariant

$$\mathcal{L} = \overline{c} \left(\partial_a - (\mu + \mu_b) \delta_{at} \right) \gamma^a c + \overline{f} \left(\partial_a - \mu \delta_{at} \right) \gamma^a f + \left| \left(\partial_a - \mu_b \delta_{at} \right) b \right|^2 + s |b|^2 + \lambda (\overline{c} f b + \text{c.c.}) + \dots$$

• Now gauge $Q - Q_b$ by a dynamic gauge field A_a . This leaves fermion c gauge-invariant

(Need a background neutralizing charge)

$$\mathcal{L} = \overline{c} \left(\partial_a - (\mu + \mu_b) \delta_{at} \right) \gamma^a c + \overline{f} \left(\partial_a - iA_a + \mu \delta_{at} \right) \gamma^a f + \left| \left(\partial_a + iA_a - \mu_b \delta_{at} \right) b \right|^2 + s |b|^2 + \lambda (\overline{c}fb + c.c.) + \dots$$

Phase diagram of boson-fermion mixture

$$\mathcal{L} = \overline{c} \left(\partial_a - (\mu + \mu_b) \delta_{at} \right) \gamma^a c + \overline{f} \left(\partial_a - \mu \delta_{at} \right) \gamma^a f + \left| \left(\partial_a - \mu_b \delta_{at} \right) b \right|^2 + s |b|^2 + \lambda (\overline{c} f b + \text{c.c.}) + \dots$$

S. Powell, S. Sachdev, and H. P. Büchler, *Physical Review* B 72, 024534 (2005)
Phase diagram of U(I) gauge theory

T. Senthil, M. Vojta, and S. Sachdev, *Physical Review B* 69, 035111 (2004)

Friday, February 25, 2011

Phase diagram of U(I) gauge theory

T. Senthil, M. Vojta, and S. Sachdev, *Physical Review B* 69, 035111 (2004)

Friday, February 25, 2011

Phase diagram of U(I) gauge theory

- FL phase: Fermi surface of gaugeneutral fermions encloses total global charge \mathcal{Q}
- FL^* phase: Fermi surface of gauge neutral fermions encloses only part of the global charge Q

Higgs/confining phase:
Fermi liquid (FL)Deconfined phase:
Fractionalized
Fermi liquid (FL*) $\mathcal{L} = \overline{c} (\partial_a - (\mu + \mu_b)\delta_{at}) \gamma^a c + \overline{f} (\partial_a - iA_a + \mu\delta_{at}) \gamma^a f$

+
$$|(\partial_a + iA_a - \mu_b\delta_{at})b|^2 + s|b|^2 + \lambda(\overline{c}fb + c.c.) + \dots$$

T. Senthil, M. Vojta, and S. Sachdev, *Physical Review B* 69, 035111 (2004)

Friday, February 25, 2011

Examples of compressible phases and their Fermi surfaces

- I. The Fermi liquid (FL)
- 2. Fermions coupled to gauge fields
- 3. Fermion-boson mixtures
- 4. The fractionalized Fermi liquid (FL*)
- 5. Theories similar to \mathcal{N} = 4 SYM

6. Theories similar to ABJM

Examples of compressible phases and their Fermi surfaces

- I. The Fermi liquid (FL)
- 2. Fermions coupled to gauge fields
- 3. Fermion-boson mixtures
- 4. The fractionalized Fermi liquid (FL*)

5. Theories similar to \mathcal{N} = 4 SYM

6. Theories similar to ABJM

\mathcal{N} = 4 SYM in D=3+1 dimensions

- SU(N) gauge invariance and SO(6) global symmetry
- Fermions carry adjoint gauge charges and are SO(6) spinors
- Bosons carry adjoint gauge charges and are SO(6) fundamentals. Bosons are paired fermions.
- $\mathcal{N} = 4$ supersymmetry

\mathcal{N} = 4 SYM in D=3+1 dimensions

- SU(N) gauge invariance and SO(6) global symmetry
- Fermions carry adjoint gauge charges and are SO(6) spinors
- Bosons carry adjoint gauge charges and are SO(6) fundamentals. Bosons are paired fermions.
- $\mathcal{N} = 4$ supersymmetry

Adding a chemical potential coupling to a SO(6) charge breaks supersymmetry and SO(6) invariance

- SU(N) gauge invariance and U(1) global symmetry
- Fermions, f_{α} , $(\alpha = 1...N^2 1)$ carry adjoint gauge charges and U(1) charge 1.
- Bosons, b_{α} , carry adjoint gauge charges and U(1) charge 2. Bosons are paired f_{α} fermions.
- No supersymmetry

- SU(N) gauge invariance and U(1) global symmetry
- Fermions, f_{α} , $(\alpha = 1 \dots N^2 1)$ carry adjoint gauge charges and U(1) charge 1.
- Bosons, b_{α} , carry adjoint gauge charges and U(1) charge 2. Bosons are paired f_{α} fermions.
- No supersymmetry
- Fermions, c, (analog of baryons), gauge-invariant bound states of b and f, carry U(1) charge 3.

$$\mathcal{Q} = f_{\alpha}^{\dagger} f_{\alpha} + 2b_{\alpha}^{\dagger} b_{\alpha} + 3c^{\dagger} c$$

$$H_f = \sum_{k,a} \frac{k^2}{2m_3} f^{\dagger}_{\alpha} f_{\alpha} - \mu \sum_k \left(\sum_{\alpha} f^{\dagger}_{\alpha} f_{\alpha} + 2 \sum_{\alpha} b^{\dagger}_{\alpha} b_{\alpha} + 3c^{\dagger} c \right)$$

$$\left(\mathcal{Q} = f_{\alpha}^{\dagger} f_{\alpha} + 2b_{\alpha}^{\dagger} b_{\alpha} + 3c^{\dagger} c\right)$$

$$H_{f} = \sum_{k,a} \frac{k^{2}}{2m_{3}} f_{\alpha}^{\dagger} f_{\alpha} - \mu \sum_{k} \left(\sum_{\alpha} f_{\alpha}^{\dagger} f_{\alpha} + 2 \sum_{\alpha} b_{\alpha}^{\dagger} b_{\alpha} + 3c^{\dagger} c \right)$$
$$H_{b} = \sum_{k,\alpha} \left(\frac{k^{2}}{2m_{1}} + \varepsilon_{1} \right) b_{\alpha}^{\dagger} b_{\alpha} + u \int d^{d} x \left(b_{\alpha}^{\dagger} b_{\alpha} \right)^{2}$$

$$\mathcal{Q} = f_{\alpha}^{\dagger} f_{\alpha} + 2b_{\alpha}^{\dagger} b_{\alpha} + 3c^{\dagger} c$$

$$H_{f} = \sum_{k,a} \frac{k^{2}}{2m_{3}} f_{\alpha}^{\dagger} f_{\alpha} - \mu \sum_{k} \left(\sum_{\alpha} f_{\alpha}^{\dagger} f_{\alpha} + 2 \sum_{\alpha} b_{\alpha}^{\dagger} b_{\alpha} + 3c^{\dagger} c \right)$$
$$H_{b} = \sum_{k,\alpha} \left(\frac{k^{2}}{2m_{1}} + \varepsilon_{1} \right) b_{\alpha}^{\dagger} b_{\alpha} + u \int d^{d} x \left(b_{\alpha}^{\dagger} b_{\alpha} \right)^{2}$$
$$H_{c} = \sum_{k} \left(\frac{k^{2}}{2m_{2}} + \varepsilon_{2} \right) c^{\dagger} c$$

$$\mathcal{Q} = f_{\alpha}^{\dagger} f_{\alpha} + 2b_{\alpha}^{\dagger} b_{\alpha} + 3c^{\dagger} c$$

$$\begin{split} H_{f} &= \sum_{k,a} \frac{k^{2}}{2m_{3}} f_{\alpha}^{\dagger} f_{\alpha} - \mu \sum_{k} \left(\sum_{\alpha} f_{\alpha}^{\dagger} f_{\alpha} + 2 \sum_{\alpha} b_{\alpha}^{\dagger} b_{\alpha} + 3c^{\dagger} c \right) \\ H_{b} &= \sum_{k,\alpha} \left(\frac{k^{2}}{2m_{1}} + \varepsilon_{1} \right) b_{\alpha}^{\dagger} b_{\alpha} + u \int d^{d} x \left(b_{\alpha}^{\dagger} b_{\alpha} \right)^{2} \\ H_{c} &= \sum_{k} \left(\frac{k^{2}}{2m_{2}} + \varepsilon_{2} \right) c^{\dagger} c \\ H_{\text{int}} &= g \int d^{d} x \left(\epsilon_{\alpha\beta\gamma} b_{\alpha}^{\dagger} f_{\beta} f_{\gamma} + \text{c.c.} \right) + \lambda \int d^{d} x \left(c^{\dagger} b_{\alpha} f_{\alpha} + \text{c.c.} \right) , \end{split}$$

The indices, $\alpha, \beta, \gamma = 1 \dots N^2 - 1$, the structure constants of SU((N) are $\epsilon_{\alpha\beta\gamma}$, and $\varepsilon_{1,2}$ are parameters tuning between possible phases. The SU(N) gauge fields are not shown, and are included as usual by covariantizing derivatives.

$$\mathcal{Q} = f_{\alpha}^{\dagger} f_{\alpha} + 2b_{\alpha}^{\dagger} b_{\alpha} + 3c^{\dagger} c$$

 $3\mathcal{A}_c = \langle \mathcal{Q} \rangle$

Fermi liquid (FL) of baryon-like particles SU(N) gauge theory is in confining phase

 $3\mathcal{A}_c + (N^2 - 1)\mathcal{A}_f = \langle \mathcal{Q} \rangle$

Fractionalized Fermi liquid (FL*) SU(N) gauge theory is in deconfined phase

No constraint on Fermi surface areas

Color Superconductor SU(N) gauge theory is in Higgs phase

 $3\mathcal{A}_c + (N^2 - 1)\mathcal{A}_f = \langle \mathcal{Q} \rangle$

Fractionalized Fermi liquid (FL*) SU(N) gauge theory is in deconfined phase

S. Sachdev, *Physical Review Letters* **105**, 151602 (2010)

S. Sachdev, Physical Review Letters 105, 151602 (2010)

Fractionalized Fermi liquid (FL*)

The f_{α} Fermi surface is unstable to a pairing transition to a color superconductor, mediated by b_{α} fluctuations and SU(N) gauge bosons at an energy scale $\sim \exp(-\sqrt{N})$.

D.T. Son, *Physical Review D* **59**, 094019 (2009) M. Metlitski, D. Mross, S. Sachdev, T. Senthil, to appear Examples of compressible phases and their Fermi surfaces

- I. The Fermi liquid (FL)
- 2. Fermions coupled to gauge fields
- 3. Fermion-boson mixtures
- 4. The fractionalized Fermi liquid (FL*)
- 5. Theories similar to \mathcal{N} = 4 SYM

6. Theories similar to ABJM

Examples of compressible phases and their Fermi surfaces

- I. The Fermi liquid (FL)
- 2. Fermions coupled to gauge fields
- 3. Fermion-boson mixtures
- 4. The fractionalized Fermi liquid (FL*)
- 5. Theories similar to \mathcal{N} = 4 SYM

6. Theories similar to ABJM

<u>ABJM theory in D=2+1 dimensions</u>

- $4N^2$ Weyl fermions carrying fundamental charges of $U(N) \times U(N) \times SU(4)_R$.
- $4N^2$ complex bosons carrying fundamental charges of $U(N) \times U(N) \times SU(4)_R$.
- $\mathcal{N} = 6$ supersymmetry

<u>ABJM theory in D=2+1 dimensions</u>

- $4N^2$ Weyl fermions carrying fundamental charges of $U(N) \times U(N) \times SU(4)_R$.
- $4N^2$ complex bosons carrying fundamental charges of $U(N) \times U(N) \times SU(4)_R$.
- $\mathcal{N} = 6$ supersymmetry

Adding a chemical potential coupling to a SU(4) charge breaks supersymmetry and SU(4) invariance

Theory similar to ABJM

- Non-abelian gauge invariance (say $U(N) \times U(N)$) and U(1) global symmetry
- Fermions, f_{α} and g^{α} , $(\alpha = 1 \dots N^2)$ carry fundamental and anti-fundamental gauge charges, and U(1) charge 1.
- Bosons, a_{α} and b^{α} , $(\alpha = 1...N^2)$ carry fundamental and anti-fundamental gauge charges, and U(1) charge 1.
- No supersymmetry

Theory similar to ABJM

- Non-abelian gauge invariance $(say U(N) \times U(N))$ and U(1) global symmetry
- Fermions, f_{α} and g^{α} , $(\alpha = 1 \dots N^2)$ carry fundamental and anti-fundamental gauge charges, and U(1) charge 1.
- Bosons, a_{α} and b^{α} , $(\alpha = 1...N^2)$ carry fundamental and anti-fundamental gauge charges, and U(1) charge 1.
- No supersymmetry
- Fermions, c, gauge-invariant bound states of fermions and bosons carrying U(1) charge 2.

Theory similar to ABJM

$$H_{\text{fermion}} = \sum_{k,a} \left(\frac{k^2}{2m_1} + \varepsilon_1 - \mu \right) \left(f^{\alpha \dagger} f_{\alpha} + g^{\dagger}_{\alpha} g^{\alpha} \right)$$

$$H_{\text{boson}} = \sum_{k,a} \left(\frac{k^2}{2m_2} + \varepsilon_2 - \mu \right) \left(a^{\alpha \dagger} a_{\alpha} + b^{\dagger}_{\alpha} b^{\alpha} \right) + u \int d^d x \left(a^{\alpha \dagger} a_{\alpha} + b^{\dagger}_{\alpha} b^{\alpha} \right)^2$$

$$H_F = \sum_k \left(\frac{k^2}{2m_3} - 2\mu \right) c^{\dagger} c$$

$$H_{\text{int}} = \lambda_1 \int d^d x \left(a^{\beta \dagger} b^{\dagger}_{\beta} f_{\alpha} g^{\alpha} + \text{c.c.} \right) + \lambda_2 \int d^d x \left(a^{\alpha \dagger} b^{\dagger}_{\beta} f_{\alpha} g^{\beta} + \text{c.c.} \right)$$

$$+ \lambda_3 \int d^d x \left(c^{\dagger} \left(f_{\alpha} b^{\alpha} - g^{\alpha} a_{\alpha} \right) + \text{c.c.} \right)$$

The $\varepsilon_{1,2}$ are parameters tuning between possible phases. The $U(N) \times U(N)$ gauge fields are not shown, and are included as usual by covariantizing derivatives.

$$\mathcal{Q} = a^{\alpha \dagger} a_{\alpha} + b^{\dagger}_{\alpha} b^{\alpha} + f^{\alpha \dagger} f_{\alpha} + g^{\dagger}_{\alpha} g^{\alpha} + 2c^{\dagger} c$$

Phase of ABJM-like theories

 $2\mathcal{A}_c + N^2 \mathcal{A}_f + N^2 \mathcal{A}_g = \langle \mathcal{Q} \rangle$

Fractionalized Fermi liquid (FL*) SU(N) gauge theory is in deconfined phase

Gauge-gravity duality and impurity mean-field theories

Gauge-gravity duality

SO(6) global symmetry
SO(6) global symmetry

General Structure Structure

Gauge-gravity duality

Begin with a CFT e.g. the SYM theory with a SO(6) global symmetry
 Add some SO(6) charge by turning on a chemical potential (this breaks the SO(6) symmetry)

The CFT is dual to a gravity theory on AdS₅ x S⁵
 In the Einstein-Maxwell theory, the chemical potential leads at T=0 to an extremal Reissner-Nordtrom black hole in the AdS₅ spacetime.

Gauge-gravity duality

Begin with a CFT e.g. the SYM theory with a SO(6) global symmetry
 Add some SO(6) charge by turning on a chemical potential (this breaks the SO(6) symmetry)

General The CFT is dual to a gravity theory on AdS₅ x S⁵
In the Einstein-Maxwell theory, the chemical potential leads at T=0 to an extremal Reissner-Nordtrom black hole in the AdS₅ spacetime.
The near-horizon geometry of the RN black hole is AdS₂ x R³. This factorization leads to finite ground state entropy density

AdS theory of finite density quantum matter

Features of AdS Einstein-Maxwell theory of non-zero density quantum matter, not expected in the final theory:

• Non-zero ground state entropy density.

AdS theory of finite density quantum matter

Features of AdS Einstein-Maxwell theory of non-zero density quantum matter, not expected in the final theory:

- Non-zero ground state entropy density.
- Single fermion self energies are momentum independent, and their singular behavior is the same on and off the Fermi surface.

AdS theory of finite density quantum matter

Features of AdS Einstein-Maxwell theory of non-zero density quantum matter, not expected in the final theory:

- Non-zero ground state entropy density.
- Single fermion self energies are momentum independent, and their singular behavior is the same on and off the Fermi surface.
- Low energy singularities are described by "conformal quantum mechanics": a 0+1 dimensional defect in a d+1 dimensional CFT. This is linked to the factorization of the near-horizon metric to $AdS_2 \times R^d$,

Solution of lattice models

Place U(1) gauge theory theory on a lattice, integrate out b and A_a , to obtain Kondo lattice Hamiltonian

Solution of lattice models

$\mathcal{L} = \mathcal{L}_{\rm imp}[c_0, f_0] + c_0^{\dagger} F_{\rm bulk} + F_{\rm bulk}^{\dagger} c_0 + \mathcal{L}_{\rm bulk}$

Has to be combined with a *self-consistency condition* between correlators on the impurity and the bulk.

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).

A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63, 134406 (2001).

• The ground state has a non-zero entropy density

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).

A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63, 134406 (2001).

- The ground state has a non-zero entropy density
- The correlations of F_{bulk} are local $(z = \infty)$

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).

- A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63, 134406 (2001).
- S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66, 045111 (2002)

- The ground state has a non-zero entropy density
- The correlations of F_{bulk} are local $(z = \infty)$
- The correlations F_{bulk} in time have a conformal structure with scaling dimension Δ (as in the boundary of AdS₂)

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).

- A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63, 134406 (2001).
- S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66, 045111 (2002)

- The ground state has a non-zero entropy density
- The correlations of F_{bulk} are local $(z = \infty)$
- The correlations F_{bulk} in time have a conformal structure with scaling dimension Δ (as in the boundary of AdS₂)
- Imposition of the self-consistency condition between impurity and boundary yields the scaling dimension $\Delta = 1$, the 'marginal Fermi liquid' value.

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).

A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63, 134406 (2001).

• The ground state has a non-zero entropy den-

These features, and the resulting fermion correlator and transport properties, co-incide with those obtained (for general Δ) using the holographic $AdS_2 \times R^d$ theory defined on the extremal horizon of the Reissner-Nordstrom black hole (T. Faulkner, H. Liu, J. McGreevy and D. Vegh, arXiv:0907.2694)

S. Sachdev, Phys. Rev. Lett. 105, 151602 (2010).

scaling dimension $\Delta = 1$, the 'marginal Fermi liquid' value.

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63, 134406 (2001).

Conclusions

Solution Compressible quantum matter is characterized by Fermi surfaces.

Second Fermi surfaces can be removed from the Luttinger count if the fermions acquire gauge charges

Phases of a strongly-coupled gauge theory: Fermi liquids (FL) and fractionalized Fermi liquids (FL*)

Conclusions

Solution Mean field Kondo lattice models capture the physics of holographic metals with a AdS₂ x R^d geometry

Needed: Holographic theory for FL* or related compressible phases, without a factorized geometry. Challenge: detect Fermi surfaces of fermions with gauge charges