Quantum condensed

 matter physics: organic insulators and ultracold atomssachdev.physics.harvard.edu

Outline

I. Organic insulators: antiferromagnets on the triangular lattice

2. Ultracold atoms: bosons in tilted Mott insulators

Outline

I. Organic insulators: antiferromagnets on the triangular lattice

2. Ultracold atoms: bosons in tilted Mott insulators

$\mathrm{X}\left[\operatorname{Pd}(\mathrm{dmit})_{2}\right]_{2}$

Half-filled band \rightarrow Mott insulator with spin S = 1/2
Triangular lattice of $\left[\mathrm{Pd}(\mathrm{dmit})_{2}\right]_{2}$
\rightarrow frustrated quantum spin system

$$
\begin{aligned}
H & =\sum_{\langle i j\rangle} J_{i j} \vec{S}_{i} \cdot \vec{S}_{j}+\ldots \\
\vec{S}_{i} & \Rightarrow \text { spin operator with } S=1 / 2
\end{aligned}
$$

Anisotropic triangular lattice antiferromagnet

Classical ground state for small J^{\prime} / J
Found in $\kappa-(E T)_{2} \mathrm{Cu}\left[\mathrm{N}(\mathrm{CN})_{2}\right] \mathrm{Cl}$

Anisotropic triangular lattice antiferromagnet

Anisotropic triangular lattice antiferromagnet

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)

Anisotropic triangular lattice antiferromagnet

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)

Anisotropic triangular lattice antiferromagnet

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)

Anisotropic triangular lattice antiferromagnet

Valence bond solid
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)

Observation of a valence bond solid (VBS) in

 $\underline{\mathrm{ETMe}_{3} \mathrm{P}\left[\mathrm{Pd}(\mathrm{dmit})_{2}\right]_{2}}$
M.Tamura, A. Nakao and R. Kato, J. Phys. Soc. Japan 75, 09370 I (2006)
Y. Shimizu, H.Akimoto, H.Tsujii, A. Tajima, and R. Kato, Phys. Rev. Lett. 99, 256403 (2007)

Magnetic Criticality

Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007)

Triangular lattice antiferromagnet

Z_{2} spin liquid

$=\frac{1}{\sqrt{2}}(\sim \uparrow \downarrow-\downarrow \downarrow)$
P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974). N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Triangular lattice antiferromagnet

Z_{2} spin liquid

$\left.=\frac{1}{\sqrt{2}}(\uparrow \downarrow\rangle-\mid \downarrow \uparrow\right)$
P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974). N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Triangular lattice antiferromagnet

Z_{2} spin liquid

P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974). N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Triangular lattice antiferromagnet

Z_{2} spin liquid

P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974). N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Triangular lattice antiferromagnet

Z_{2} spin liquid

$=\frac{1}{\sqrt{2}}(\sim \uparrow \downarrow-\downarrow \downarrow)$
P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974). N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Triangular lattice antiferromagnet

Z_{2} spin liquid

$=\frac{1}{\sqrt{2}}(\sim \uparrow \downarrow-\downarrow \downarrow)$
P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974). N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Triangular lattice antiferromagnet

Z_{2} spin liquid

Excitations of the Z_{2} Spin liquid

A vison

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Excitations of the Z_{2} Spin liquid

A vison

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Excitations of the Z_{2} Spin liquid

A vison

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Excitations of the Z_{2} Spin liquid

A vison

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Excitations of the Z_{2} Spin liquid

A vison

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Excitations of the Z_{2} Spin liquid

A vison

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Excitations of the Z_{2} Spin liquid

A vison

- A characteristic property of a Z_{2} spin liquid is the presence of a spinon pair condensate
- A vison is an Abrikosov vortex in the pair condensate of spinons
- Visons are are the dark matter of spin liquids: they likely carry most of the energy, but are very hard to detect because they do not carry charge or spin.

Effective description of Z_{2} spin liquids, their visons and valence bond solids

Quantum dimer model:

Hilbert space - set of dimer coverings of triangular/square lattice

D. Rokhsar and S.A. Kivelson, Phys. Rev. Lett. 6I, 2376 (1988) R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, I88I (200I)

Outline

I. Organic insulators: antiferromagnets on the triangular lattice

2. Ultracold atoms: bosons in tilted Mott insulators

Outline

I. Organic insulators: antiferromagnets on the triangular lattice

2. Ultracold atoms: bosons in tilted Mott insulators

Susanne
Pielawa

Takuya
Kitagawa

Erez
Berg
S. Sachdev, K. Sengupta, and S.M. Girvin, Phys. Rev. B 66, 075 I28 (2002)
S. Pielawa, T. Kitagawa, E. Berg, S. Sachdev, arXiv:I IOI. 2897

Superfluid-insulator transition of ${ }^{87} \mathrm{Rb}$ atoms in a magnetic trap and an optical lattice potential

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Mott insulator of ${ }^{87} \mathrm{Rb}$ atoms in a magnetic trap and an optical lattice potential

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Applying an "electric" field to the Mott insulator

Z

$$
\begin{gathered}
H=-t \sum_{\langle i j\rangle}\left(b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}\right)+\frac{U}{2} \sum_{i} n_{i}\left(n_{i}-1\right)-\sum_{i} \boldsymbol{E} \cdot \boldsymbol{r}_{i} n_{i} \\
n_{i}=b_{i}^{\dagger} b_{i}
\end{gathered}
$$

$$
|U-E|, t \ll E, U
$$

Resonant transition when $E \approx U$

Virtual state

Virtual state

Resonant transition when $E \approx U$

$\stackrel{18}{8}_{\|_{8}}$

Resonant transition when $E \approx U$

Hamiltonian of resonant subspace

Hamiltonian of resonant subspace

$$
\hat{H}=-\sqrt{2} t \sum_{i}\left(\hat{d}_{i}^{\dagger}+\hat{d}_{i}\right)+\Delta \sum_{i} \hat{d}_{i}^{\dagger} \hat{d}_{i}
$$

Hamiltonian of resonant subspace

$$
\hat{H}=-\sqrt{2} t \sum_{i}\left(\hat{d}_{i}^{\dagger}+\hat{d}_{i}\right)+\Delta \sum_{i} \hat{d}_{i}^{\dagger} \hat{d}_{i}
$$

max one dipole per site: no neighboring dipoles:
Constraints:

$$
\hat{d}_{i}^{\dagger} \hat{d}_{i} \leq 1
$$

$$
\hat{d}_{i}^{\dagger} \hat{d}_{i} \hat{d}_{i+1}^{\dagger} \hat{d}_{i+1}=0
$$

Hamiltonian of resonant subspace

$$
\hat{H}=-\sqrt{2} t \sum_{i}\left(\hat{d}_{i}^{\dagger}+\hat{d}_{i}\right)+\Delta \sum_{i} \hat{d}_{i}^{\dagger} \hat{d}_{i}
$$

max one dipole per site: no neighboring dipoles:
Constraints:

$$
\hat{d}_{i}^{\dagger} \hat{d}_{i} \leq 1
$$

$$
\hat{d}_{i}^{\dagger} \hat{d}_{i} \hat{d}_{i+1}^{\dagger} \hat{d}_{i+1}=0
$$

Hamiltonian of resonant subspace

$$
\hat{H}=-\sqrt{2} t \sum_{i}\left(\hat{d}_{i}^{\dagger}+\hat{d}_{i}\right)+\Delta \sum_{i} \hat{d}_{i}^{\dagger} \hat{d}_{i}
$$

max one dipole per site: no neighboring dipoles:
Constraints:

$$
\hat{d}_{i}^{\dagger} \hat{d}_{i} \leq 1
$$

$$
\hat{d}_{i}^{\dagger} \hat{d}_{i} \hat{d}_{i+1}^{\dagger} \hat{d}_{i+1}=0
$$

Phase diagram of dipole model

S. Sachdev, K. Sengupta, and S.M. Girvin, Phys. Rev. B 66, 075 I28 (2002)

Phase diagram of dipole model

S. Sachdev, K. Sengupta, and S.M. Girvin, Phys. Rev. B 66, 075 I28 (2002)

Tilting a decorated square lattice

Susanne
Pielawa

Tilting a decorated square lattice

Susanne
Pielawa

Tilting a decorated square lattice

Tilting a decorated square lattice

Strong tilt: maximize sites with 2 bosons

Tilting a decorated square lattice

Strong tilt: maximize sites with 2 bosons

Tilting a decorated square lattice

Strong tilt: maximize sites with 2 bosons

Tilting a decorated square lattice

Maximum number of 2's

Tilting a decorated square lattice

Can also get some 3's from neighboring 2's.

Tilting a decorated square lattice

Can also get some 3's from neighboring 2's.

Tilting a decorated square lattice

Can also get some 3's from neighboring 2's.

Tilting a decorated square lattice

Can also get some 3's from neighboring 2's.

Tilting a decorated square lattice

Can also get some 3's from neighboring 2's.

Tilting a decorated square lattice

Can also get some 3's from neighboring 2's.

Tilting a decorated square lattice

Can also get some 3's from neighboring 2's.

Tilting a decorated square lattice

No more 3's are possible, but some 2's are left over

Tilting a decorated square lattice

Start again

Tilting a decorated square lattice

Another maximal set of 2's

Tilting a decorated square lattice

Maximum number of 3's with no 2's left over

Tilting a decorated square lattice

Susanne Pielawa

Configurations map onto dimer coverings of the square lattice !

Tilting a decorated square lattice

Go backwards around a plaquette

Tilting a decorated square lattice

Go backwards around a plaquette

Tilting a decorated square lattice

Go backwards around a plaquette

Tilting a decorated square lattice

Go backwards around a plaquette

Tilting a decorated square lattice

Then create a different set of 3's

Tilting a decorated square lattice

Then create a different set of 3's

Tilting a decorated square lattice

A different dimer covering

Tilting a decorated square lattice

Susanne
Pielawa

Dimers can resonate around a plaquette

Tilting a decorated square lattice

Susanne
Pielawa

Dimers can resonate around a plaquette

Tilting a decorated square lattice

Susanne
Pielawa

Strong tilt:
 effective quantum dimer model

Conclusions

Q Many common issues on many body quantum correlations in condensed matter and ultracold atoms

Q Tilting Mott insulators can generate many interesting states with non-trivial quantum entanglement

