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The Hubbard Model

Will study the honeycomb and square lattices.
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The Hubbard Model
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In the limit of large U , and at a density of one particle per site,

this maps onto the Heisenberg antiferromagnet

HAF =
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a
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• Begin with free electrons.
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• Begin with free electrons.

• The phase with ��ϕ� �= 0 is an insulator with a
gap between conduction and valence bands.
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Honeycomb lattice at half filling.

We define the unit length vectors

e1 = (1, 0) , e2 = (−1/2,
√
3/2) , e3 = (−1/2,−

√
3/2).

(1)
Note that ei · ej = −1/2 for i �= j , and e1 + e2 + e3 = 0.
We take the origin of co-ordinates of the honeycomb lattice at the
center of an empty hexagon. The A sublattice sites closest to the
origin are at e1, e2, and e3, while the B sublattice sites closest to
the origin are at −e1, −e2, and −e3.
The reciprocal lattice is generated by the wavevectors

G1 =
4π

3
e1 , G2 =

4π

3
e2 , G3 =

4π

3
e3 (2)

The first Brillouin zone is a hexagon whose vertices are given by

Q1 =
1

3
(G2 − G3) , Q2 =

1

3
(G3 − G1) , Q3 =

1

3
(G1 − G2),

(3)
and −Q1, −Q2, and −Q3.



We define the Fourier transform of the fermions by

cA(k) =
�

r

cA(r)e
−ik·r

(4)

and similarly for cB .

The hopping Hamiltonian is

H0 = −t

�

�ij�

�
c
†
AiαcBjα + c

†
BjαcAiα

�
(5)

where α is a spin index. If we introduce Pauli matrices τ a in

sublattice space (a = x , y , z), this Hamiltonian can be written as

H0 =

�
d
2
k

4π2
c
†
(k)

�
−t

�
cos(k · e1) + cos(k · e2) + cos(k · e3)

�
τ x

+ t

�
sin(k · e1) + sin(k · e2) + sin(k · e3)

�
τ y

�
c(k) (6)

The low energy excitations of this Hamiltonian are near k ≈ ±Q1.
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In terms of the fields near Q1 and −Q1, we define

ΨA1α(k) = cAα(Q+ k)

ΨA2α(k) = cAα(−Q+ k)

ΨB1α(k) = cBα(Q+ k)

ΨB2α(k) = cBα(−Q+ k) (7)

We consider Ψ to be a 8 component vector, and introduce Pauli

matrices ρa which act in the 1, 2 valley space. Then the

Hamiltonian is

H0 =

�
d
2
k

4π2
Ψ

†
(k)

�
vτ ykx + vτ xρzky

�
Ψ(k), (8)

where v = 3t/2; below we set v = 1. Now define Ψ = Ψ
†ρzτ z .

Then we can write the imaginary time Lagrangian as

L0 = −iΨ (ωγ0 + kxγ1 + kyγ2)Ψ (9)

where

γ0 = −ρzτ z γ1 = ρzτ x γ2 = −τ y (10)



Antiferromagnetism

We use the operator equation (valid on each site i):

U
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Then we decouple the interaction via
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�
2U

3

�

i

�
dτSa2

i

�
=

�
DJai (τ) exp

�
−
�

i

�
dτ

�
3U

8
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a
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(12)
We now integrate out the fermions, and look for the saddle point
of the resulting effective action for Jai . At the saddle-point we find
that the lowest energy is achieved when the vector has opposite
orientations on the A and B sublattices. Anticipating this, we look
for a continuum limit in terms of a field ϕa where

JaA = ϕa , JaB = −ϕa (13)



The coupling between the field ϕa and the Ψ fermions is given by
�

i

Jai c
†
iασ

a
αβciβ = ϕa

�
c†Aασ

a
αβcAβ − c†Bασ

a
αβcBβ

�

= ϕaΨ†τ zσaΨ = −ϕaΨρzσaΨ (14)

From this we motivate the low energy theory

L = Ψγµ∂µΨ+
1

2

�
(∂µϕ

a)2 + sϕa2
�
+

u

24

�
ϕa2

�2 − λϕaΨρzσaΨ

(15)
Note that the matrix ρzσa commutes with all the γµ; hence ρzσa

is a matrix in “flavor” space. This is the Gross-Neveu model, and
it describes the quantum phase transition from the Dirac
semi-metal to an insulating Néel state. In mean-field theory, the
Dirac semi-metal is obtained for s > 0 with �ϕa� = 0. The Néel
state obtains for s < 0, and we have ϕa = N0δaz (say), and so the
dispersion of the electrons is

ωk = ±
�
k2 + λ2N2

0 (16)

near the points ±Q1. These form the conduction and valence
bands of the insulator.



Outline

1.  Honeycomb lattice: 
                  semi-metal and antiferromagnetism

   Dirac fermions and the Gross-Neveu model

2.  Spin liquids
Unified formulation as a SO(4) gauge theory

3.  Instabilities of spin liquids
Geometric phases, valence bond solids, 
and other competing orders



Outline

1.  Honeycomb lattice: 
                  semi-metal and antiferromagnetism

   Dirac fermions and the Gross-Neveu model

2.  Spin liquids
Unified formulation as a SO(4) gauge theory

3.  Instabilities of spin liquids
Geometric phases, valence bond solids, 
and other competing orders



Z. Y. Meng et al., Nature 464, 847 (2010).
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S. Sachdev, M. A. Metlitski, Y. Qi, and S. Sachdev  Phys. Rev. B 80, 155129 (2009)



�
c↑
c↓

�
=

�
z↑ −z∗↓
z↓ z∗↑

� �
ψ+

ψ−

�
Quantum “disordering” magnetic order

The Hubbard model can be written

exactly as a lattice gauge theory with a

SU(2)s;g×SU(2)spin×U(1)charge

invariance.

The SU(2)s;g is a gauge invariance,

while SU(2)spin×U(1)charge is a global symmetry



Global symmetry operations:

• Spin rotations, SU(2)spin

• Combine electromagnetic charge (electron number)
U(1)charge with particle-hole transformations to ob-
tain SU(2)pseudospin.
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Unified spin liquid theory

Decompose electron operator into real fermions, χ:

c↑ = χ1 + iχ2 ; c↓ = χ3 + iχ4

Introduce a 4-component Majorana fermion ζi, i = 1 . . . 4
and a SO(4) matrix R, and decompose:

χ = R ζ
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Unified spin liquid theory

Decompose electron operator into real fermions, χ:

c↑ = χ1 + iχ2 ; c↓ = χ3 + iχ4

Introduce a 4-component Majorana fermion ζi, i = 1 . . . 4
and a SO(4) matrix R, and decompose:

χ = R ζ

By breaking SO(4)gauge with different Higgs fields, we can 
reproduce essentially all earlier theories of spin liquids. 

We also find many new spin liquid phases, some with 
Majorana fermion excitations which carry 

neither spin nor charge
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Matter context of SU(2)s;g×SU(2)spin×U(1)charge
theory

• Fundamental fermions ψ transform-
ing as (2,1, 1),

• Fundamental scalar z transforming
as (2̄,2, 0), connecting local to global
Néel order,

• Adjoint scalar �N(ri) = ψ†
i�σψi trans-

forming as (3,1, 0), measuring local
Néel order.
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SU(2) QCD with Nf = 4 mass-
less Dirac quarks

L =
1

g2
F 2
µν + ψγµ(∂µ − iAµ)ψ

Could describe a CFT3 like SYM,
but could also be unstable to con-
finement.
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Spin liquid:
CFT of SU(2) QCD
with Nf =4 massless 

Dirac quarks

• SU(2) is Higgsed down to

U(1).

• All matter fields are gapped.

• U(1) monopoles drive Polyakov

confinement

• Spectral flow in filled fermion

bands leads to Berry phases

of monopoles, endowing them

with crystal momentum.

• Confining state has valence

bond solid (VBS) order
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Fluctuating Néel states

Begin with the electronic Hamiltonian on the square lattice

H0 = −
�

i ,j

t(ri − rj)c
†
α(ri )cα(rj) (1)

Now we allow for a spatially varying Néel order n
a
(r) (a = x , y , z).

Then the Hamiltonian is

H0 = −
�

i ,j

t(ri − rj)c
†
α(ri )cα(rj) + N0

�

i

ηin
a
(ri )c

†
α(ri )σ

a
αβcβ(ri )

(2)

where ηi = ±1 on the two sublattices. We transform to a rotating

reference frame in the varying Néel background so that the Néel

order points in the constant direction (0,0,1) in the new reference

frame: �
c↑
c↓

�
=

�
z↑ −z

∗
↓

z↓ z
∗
↑

��
ψ+

ψ−

�
(3)

where ψp, p = ±, are the “electrons” in the rotating reference

frame. A fixed orientation of the Néel order is realized in the



rotating reference frame by choosing the zα so that

n
a
= z

∗
ασ

a
αβzβ (4)

However, we will not assume any slow variations in the fermions cα

and ψp, allowing them to carry arbitrary momenta and band

structures.

Inserting Eq. (3) into Eq. (2), we obtain the theory for the ψ±
fermions, which we write in the form

H = −
�

i ,j

t(ri−rj)ψ
†
p(ri )e

ipAijψp(rj)+N0

�

i

ηi p ψ
†
p(ri )ψp(ri )+. . .

(5)

The flux in the continuum gauge field A can be related to

gradients in the antiferromagnetic order parameter by

∂xAy − ∂yAx =
1

2
�abcn

a∂xn
b∂yn

c . (6)

Thus inducing a 2π flux in A corresponds to changing the

skyrmion number of the field n
a
(r) by unity i.e. to introducing a

hedgehog defect in the Néel order.



Linear response

Now we compute the linear response of Eq. (5) to the gauge field
Aij , for a slowly varying spacetime dependence. After a Fourier
transform of Eq. (5), we can write for zero Aij

H0 =
�

k

�
εkψ

†(k)ψ(k) + N0ψ
†(k+Q)σzψ(k)

�
(7)

where Q = (π,π) and

εk = −
�

s

t(s) cos(k · s), (8)

with t(−s) = t(s). The summation over momenta extends over
the entire square lattice Brillouin zone. Also, we will drop the ±
indices of the ψ±, and all Pauli matrices are assumed to act on the
± space. The single fermion Green’s function of H0 is

�ψ(k) ; ψ†(p)� = δk,p

�
u
2
k

−iω + E1k
+

v
2
k

−iω + E2k

�

+ δk+Q,pσ
z
ukvk

�
1

−iω + E1k
− 1

−iω + E2k

�
. (9)



The eigenenergies in Eq. (9) are

E1,2k =
εk + εk+Q

2
±

��
εk − εk+Q

2

�2

+ N2
0 , (10)

and the parameters are

uk = cos(θk/2) , vk = sin(θk/2) (11)

with

tan θk =
N0

(εk − εk+Q)/2
, 0 < θk < π (12)

Note that these relations imply

uk+Q = vk , vk+Q = uk , E1,k+Q = E1k , E2,k+Q = E2k.
(13)

Now we expand Eq. (5) to first order in Aij

H1 = −i

�

i<j

t(ri − rj)Aij

�
ψ†
i σ

zψj − ψ†
j σ

zψi

�
(14)

=
�

k,q

�
A(q) ·

∂εk
∂k

�
ψ†(k+ q/2)σzψ(k− q/2) +O(q2)



Now we will use the Kubo formula to determine the response to
this applied gauge field. We will work to linear response order A,
and to linear order in q.
We have to carefully define an observable: it should be gauge
invariant and spin-rotation invariant. For this reason we look at
the response in the following

Mij ≡ ψ†
i e

iσzAijψj (15)

We want to compute the change in �Mij� to linear order in A(q),
and in the limit of small q. We find

δ�Mij� = 2
�

k,q

e−ik·(ri−rj )e iq·(rj+ri )/2e iQ·rjA(q) · I(k,q) (16)

where

I(k,q) =
N0

(E1k − E2k)3

�
∂εk
∂k

�
q · ∂εk+Q

∂k

�
− ∂εk+Q

∂k

�
q · ∂εk

∂k

��

(17)



Combining (16) and (17), we have the main result

�
c†(k)c(k+Q)

�
= −iF(k) (∂xAy − ∂yAx) (18)

where

F(k) =
N0

(E1k − E2k)3

�
∂εk+Q

∂k
× ∂εk

∂k

�
. (19)

We have written Eq. (18) in terms of the original electron
operators c(k): we are working to linear order in A, and so this
order all variables can be mapped onto the original gauge-invariant
operators.
Note that

�
c†(k)c(k+Q)

�
= 0 before the gauge flux was applied,

because we are in the quantum-disordered phase where
translational symmetry is preserved. Also, even in mean-field theory
of the Hamiltonian in Eq. (7) we have

�
ψ†(k)ψ(k+Q)

�
= 0

because of spin inversion. Only
�
ψ†(k)σzψ(k+Q)

�
�= 0 for

Eq. (7) before the gauge flux was applied.



A plot of F(k) is shown below for

εk = cos kx − cos ky + 0.4 cos(kx + ky ) + 0.4 cos(kx − ky ) and
N0 = 1.

The integral of F(k) is zero over the Brillouin zone. However, note

that it has the same symmetry as the function

(cos kx − cos ky ) sin kx sin ky ; so the integral of

F(k)(cos kx − cos ky ) sin kx sin ky is non-zero.



This suggest we define the charge Qt by

Qt = −i
�

k

c†(k)c(k+Q)(cos kx − cos ky ) sin kx sin ky . (20)

Note Q†
t = Qt . Before the monopole, �Qt� = 0. After the

monopole tunneling event, we have �Qt� �= 0. We can normalize
Qt so that �Qt� = 1 for each monopole, and the normalization
constant will depend upon (19) and the details on the band
structure.

Competing orders

We now discuss the implications of the main result in Eq. (18) in
the ‘quantum disordered’ phase where Néel order has been lost.
Such a phase will have a proliferation of hedgehog/monpole
tunnelling events, and so Eq. (18) implies that there will be
correspondingly large fluctuations in the charge Qt . We can
therefore expect that fluctuations in variables conjugate to Qt will
be suppressed, and will therefore have long-range order: this is the
competing order induced by the geometric phase in Eq. (18).



Thus any quantum variable conjugate to Qt is a bona-fide

competing order. There are many possibilities, but for now let us

verify that the traditional VBS order does satisfy the requirements.

Specifically, the VBS order is V = Vx + iVy defined by

Vx = i
�

k

c†(k)c(k+Qx) sin kx

Vy = i
�

k

c†(k)c(k+Qy ) sin ky (21)

where Qx = (π, 0) and Qy = (0,π). Now we can commute the

commutators

[Qt ,Vx ] = −
�

k

c†(k)c(k+Qy ) sin ky
(cos(kx)− cos(3kx))

2
� iVy

[Qt ,Vy ] =

�

k

c†(k)c(k+Qx) sin kx
(cos(ky )− cos(3ky ))

2
� −iVx

Here the � means that the two operators have the same symmetry

under the square lattice space group.



Thus we have the key result

[Qt ,V ] � V . (22)

This means that V is a raising order for Qt . But this is precisely
the effect of the monopole tunneling event: in other words, V has
the same quantum numbers as a monopole operator. Then we
conclude that V is a competing order which becomes long-range in
the quantum-disordered Néel phase.
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Let us now present an alternative version of the above argument.

By a suitable Hubbard-Stratonovich transformation of some

interaction term, we can think of Qt as a dynamic fluctuating

field. The quantum-disordered phase has a low energy photon field

Aµ, (µ is a spacetime index). Thus we can write an effective

Lagrangian for this photon phase in terms of the dynamic fields Qµ

and Aµ:

Leff =
Q2

µ

2K
+

1

2e2
(�µνλ∂νAλ)

2
+

i

2πK
Qµ�µνλ∂νAλ (23)

Here the last term represents the linear response computed in

Eq. (18), after appropriate renormalization: if we take a derivative

of the action with respect to Qt , we reproduce the response in

Eq. (18). The spatial components of Qµ are similarly defined by an

appropriate response to the electric components of the photon.

The term proportional to 1/e2 is the usual Maxwell action for Aµ,

obtained after integrating out the zα and ψp. Now we can perform

the standard duality transformation of 2+1 dimensional

electrodynamics on Leff . Here these correspond to decoupling the

Maxwell term by a Hubbard-Stratonovich field and then integrating



out the photon; this yields

Leff =
Q2

µ

2K
+

e2

8π2

�
∂µφ− Qµ

K

�2

(24)

where e iφ is the monopole operator. This allows to conclude that

the correlations of ∂µφ are the same as those of Qµ, or in other

words, we have the operator correspondence ∂µφ � Qµ.

Now let us look for an order parameter V ∼ e iφ so that ∂tφ � Qt .

Or more precisely, we need a V so that

−i(V †∂tV − V ∂tV †) � Qt . It is easy to check that the definition

in Eq. (21) does satisfy the needed requirements.


