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Topological order
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(N. Read and S.S., 1991)
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Symmetry-enriched topological (SET) order

and deconfined criticality 
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Insulating 
Antiferromagnet

Néel order parameter n(xi, ⌧) = ⌘iSi(⌧), where ⌘i = ±1 on two sublattices.
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where aµ is an emergent U(1) gauge field.



Theory for S = 1/2 antiferromagnet also has spin Berry phase terms
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Néel order wih Nambu-Goldstone
(spin-wave) gapless excitations.

Confined phase with hz↵i = 0

VBS order

(N. Read and S.S., 1989;  S.S. and R. Jalabert, 1990)



Theory for S = 1/2 antiferromagnet also has spin Berry phase terms

S =

1

g

Z
d

2
xd⌧ |(@µ � iaµ)z↵|2 + i

X

i

Z
d⌧ ⌘iai⌧

g

Higgs phase with hz↵i 6= 0
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(Fradkin and Shenker, 1979)

The phase of � winds by 2⇡
around the cycle of the torus,

trapping U(1) flux ⇡ in the

hole of the torus. This leads

to 4-fold ground state

degeneracy

To obtain a Z2 deconfined phase, we need to condense
a Higgs field, �, with U(1) charge 2.

(N. Read and S.S., 1991; X.G. Wen, 1991)
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The simplest route to such Higgs fields is to condense spin-singlet
pairs of long-wavelength spinons, z↵. There are two candidates for

such Higgs fields, corresponding to the operators

"↵�z↵@⌧z� , "↵�z↵~rz�

So we introduce corresponding Higgs fields, P and ~Q, and the
following e↵ective action with additional tuning parameters s1 and s2
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The broken symmetries co-existing with Z2 topological order are 
precisely those observed in the pseudogap phase of the cuprates
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Phase diagram of Sr2Ir1-xRhxO4

T. Qi et al., PRB 86, 125105 (2012)

J. P. Clancy et al., PRB 89, 054409 (2014)

Y. Cao et al., Nat. Commun. 7, 11367 (2016)

J. Jeong et al., arXiv:1701.06485 (2017)

Polarized neutron 
diffraction

L. Zhao, D. H. Torchinsky, H. Chu, V. Ivanov, R. Lifshitz, R. Flint, T. Qi, G. Cao, and D. Hsieh, Nature Physics 12, 32 (2016)
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An attractive possibility

at intermediate g with hz↵i = 0
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Nature Physics 11, 62 (2015)

ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS3172

Total

50

0

100

150

200

100

50

0

150

200

1.5 2.0 2.5 3.0 3.5 4.0 4.5

Transverse

Longitudinal50

25

0

Energy (meV)
10 15 20

Continua

Total

Transverse

Longitudinal

Continua

25 30

0

25

50

75

Energy (meV)
10 15 20 25 30

1.5 2.0 2.5 3.0 3.5 4.0 4.5
a e

fb

g

h

c

d

( , 0)π

( , 0)π

( , 0)π

( , 0)π ( /2, /2)π π

( /2, /2)π π

( /2, /2)π π

( /2, /2)π π

⊥

continua
2   zz

(q
, 

)ω
ω

⊥ (
q,

 
)

zz
(q

, 
)ω

ω
⊥ 

(q
, 

) [
xx

 + 
yy

]

/Jω /Jω

Figure 2 | Summary of the polarized neutron scattering data.
a–c,e–g, Energy dependence of the total, transverse and longitudinal
contributions to the dynamic structure factor, respectively, at constant
wavevectors q=(⇡ ,0) (a–c) and q=(⇡/2,⇡/2) (e–g) measured by
polarized neutron scattering on CFTD. The solid lines indicate
resolution-limited Gaussian fits, while the dashed lines are empirical
lineshapes used as guides-to-the-eye. d,h, Transverse dynamic structure
factor with subtracted resolution-limited Gaussian fits at (⇡ ,0) and
(⇡/2,⇡/2), respectively. Error bars correspond to one standard deviation.

(Fig. 2g). In contrast, the response at (⇡ , 0) exhibits a pro-
nounced high-energy tail, starting right above the peak maximum
at !/J =2.19(2), and extending up to !/J ⇡ 3.8. This tail carries
40(12)% of the total spectral weight at (⇡ , 0) (Fig. 2a), and is
evident in both the transverse (Fig. 2b) and longitudinal (Fig. 2c)
channels. To isolate the continuous component in the transverse
channel we subtract resolution-limited Gaussians corresponding to
sharp, single-particle responses, with the results shown in Fig. 2d,h.
This analysis reveals the important fact that the transverse contin-
uum at (⇡ , 0) is within error twice the longitudinal contribution
(Fig. 2d). Thus, we can conclude that the continuum at (⇡ , 0)
arises from correlations which are isotropic in spin space, with
S?(q, !) = 2Szz(q, !), whereas by contrast the continuum con-
tribution at (⇡/2, ⇡/2) is fully contained in the longitudinal
channel (Fig. 2h).

The pronounced asymmetric and non-Lorentzian line shape of
the continuum at (⇡ , 0) cannot be accounted for by conventional
e�ects, even including instrumental resolution. SWT predicts that
magnon interactions transfer up to 20% of the transverse spectral
weight at the zone boundary from the sharp one-magnon peak
to a higher energy continuum of three-magnon states17. However,
the resulting line shape di�ers radically from our observations,
does not coincide with the longitudinal response, and does not
seem to depend significantly on the wavevector along the zone
boundary. Spontaneous magnon decays can in principle produce
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Figure 3 | Schematic representation of local spin flip and spatially
separated quasiparticle-pair excitations in the Gutzwiller-projected
approach. a, The mean-field wavefunction | MFi is shown as a
resonating-valence-bond liquid (for better visualization, all singlets are
shown as nearest-neighbour and the Néel order is ignored). Configurations
containing doubly occupied sites (right-hand side) are discarded by the
Gutzwiller projection PG. b, Local spin flips create triplets out of resonating
singlets. Configurations from | MFi originally containing doubly occupied
sites are still projected out (right-hand side). c, Non-local quasiparticle-pair
excitations are constructed as projected particle–hole excitations. At a
non-zero separation r, they contribute by annihilating a doubly occupied
site with a hole, leaving two separated spin ups. After projection, the only
configurations left are the ones constructed from | MFi that contained one
empty and one doubly occupied site (right-hand side).

an asymmetric line shape, but are prohibited in this case by the
collinearity of the magnetic order16,44. Instead, recent quantum
Monte Carlo work45 suggests looking for explanations of the contin-
uum contribution to the dynamic structure factor at (⇡ , 0) involving
the deconfinement of fractional excitations. This is further moti-
vated by the observed coexistence of sharp two-spinon bound states
with a broad multi-spinon continuum, at comparable energy ranges
but di�erent wavevectors, in the quasi-2D materials Cs2CuCl412,46
and LiCuVO4

47, made of strongly coupled Heisenberg chains.
To explore whether fractionalization of magnons can account for

the (⇡ , 0) anomaly in the QSLHAF, we use a theoretical approach
based on Gutzwiller-projected variational wavefunctions48,49. In this
approach, spin operators are transformed into pairs of S = 1/2
fermionic operators so that equation (1) becomes

H=� J
2
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hi,ji,� ,� 0
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i� cj� c

†
i� 0ci� 0 +constant (2)

where c†
i� (ci� ) creates (annihilates) an electron with spin �

at site i. This transformation embeds the original spin Hilbert
space into an electronic Hilbert space which also contains non-
magnetic sites occupied by zero or two electrons. As a result,
equations (1) and (2) are only equivalent on the restricted
electronic subspace with half electron filling and no empty sites
or double occupancies. This constraint can be enforced exactly
by the so-called Gutzwiller projector PG. The advantage of this
approach is that pairs of fractional S=1/2 quasiparticles (for
the original spin Hamiltonian) can be naturally constructed
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at !/J =2.19(2), and extending up to !/J ⇡ 3.8. This tail carries
40(12)% of the total spectral weight at (⇡ , 0) (Fig. 2a), and is
evident in both the transverse (Fig. 2b) and longitudinal (Fig. 2c)
channels. To isolate the continuous component in the transverse
channel we subtract resolution-limited Gaussians corresponding to
sharp, single-particle responses, with the results shown in Fig. 2d,h.
This analysis reveals the important fact that the transverse contin-
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tribution at (⇡/2, ⇡/2) is fully contained in the longitudinal
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sites are still projected out (right-hand side). c, Non-local quasiparticle-pair
excitations are constructed as projected particle–hole excitations. At a
non-zero separation r, they contribute by annihilating a doubly occupied
site with a hole, leaving two separated spin ups. After projection, the only
configurations left are the ones constructed from | MFi that contained one
empty and one doubly occupied site (right-hand side).

an asymmetric line shape, but are prohibited in this case by the
collinearity of the magnetic order16,44. Instead, recent quantum
Monte Carlo work45 suggests looking for explanations of the contin-
uum contribution to the dynamic structure factor at (⇡ , 0) involving
the deconfinement of fractional excitations. This is further moti-
vated by the observed coexistence of sharp two-spinon bound states
with a broad multi-spinon continuum, at comparable energy ranges
but di�erent wavevectors, in the quasi-2D materials Cs2CuCl412,46
and LiCuVO4

47, made of strongly coupled Heisenberg chains.
To explore whether fractionalization of magnons can account for

the (⇡ , 0) anomaly in the QSLHAF, we use a theoretical approach
based on Gutzwiller-projected variational wavefunctions48,49. In this
approach, spin operators are transformed into pairs of S = 1/2
fermionic operators so that equation (1) becomes

H=� J
2

X

hi,ji,� ,� 0
c†
i� cj� c

†
i� 0ci� 0 +constant (2)

where c†
i� (ci� ) creates (annihilates) an electron with spin �

at site i. This transformation embeds the original spin Hilbert
space into an electronic Hilbert space which also contains non-
magnetic sites occupied by zero or two electrons. As a result,
equations (1) and (2) are only equivalent on the restricted
electronic subspace with half electron filling and no empty sites
or double occupancies. This constraint can be enforced exactly
by the so-called Gutzwiller projector PG. The advantage of this
approach is that pairs of fractional S=1/2 quasiparticles (for
the original spin Hamiltonian) can be naturally constructed
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surface of size 
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M. Platé, J. D. F. Mottershead, I. S. Elfimov, D. C. Peets, Ruixing Liang, D. A. Bonn, W. N. Hardy,
S. Chiuzbaian, M. Falub, M. Shi, L. Patthey, and A. Damascelli, Phys. Rev. Lett. 95, 077001 (2005)
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Pseudogap 
metal 

at low p
Many indications that 
this metal behaves like 
a Fermi liquid, but with 

Fermi surface size p 
and not 1+p.

S. Badoux, W. Tabis, F. Laliberté, G. Grissonnanche, B. Vignolle, D. Vignolles, J. Béard, D.A. Bonn,
W.N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust, Nature 531, 210 (2016).
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metal 

at low p
Many indications that 
this metal behaves like 
a Fermi liquid, but with 

Fermi surface size p 
and not 1+p.

If present at T=0, a 
metal with a size p 
Fermi surface (and 

translational symmetry 
preserved) must have 

topological order

T. Senthil, M. Vojta and S. Sachdev, PRB 69, 035111 (2004)



Begin with the “spin-fermion” model. Electrons ci↵ on the square

lattice with dispersion
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where ⌘i = ±1 on the two sublattices.

When �

`
(i) =constant independent of i, we have long-range AFM,

and a gap in the fermion spectrum at the anti-nodes.
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Can we get a stable zero temperature state 

with “fluctuating antiferromagnetism” and a 

small Fermi surface (and so a gap near the 

anti-nodes) ?

Yes, provided the metal has 
topological order 

(e.g. Z2 topological order)

T. Senthil, M. Vojta and S. Sachdev, PRB 69, 035111 (2004)



For fluctuating antiferromagnetism, we transform to a
rotating reference frame using the SU(2) rotation Ri
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The Higgs field is the AFM order in the rotating reference frame.
Note that this representation is ambiguous up to a
SU(2) gauge transformation, Vi
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Fluctuating antiferromagnetism

After transforming to the rotating reference frame,
the “Yukawa” coupling between the electrons and
the spin density wave order becomes the Yukawa
coupling between the chargons and the Higgs field

�`(i)c†i,↵�
`
↵�ci,� = Ha(i) †

i,s�
a
ss0 i,s0



Fluctuating antiferromagnetism

The simplest e↵ective Hamiltonian for the fermionic chargons is
the same as that for the electrons, with the AFM order replaced
by the Higgs field.

H = �
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IF we can transform to a rotating reference frame in whichHa(i) =
a constant independent of i and time, THEN the  fermions in
the presence of fluctuating AFM will inherit the anti-nodal gap of
the electrons in the presence of static AFM.
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Lattice gauge theory

Field Symbol Statistics SU(2)gauge SU(2)spin U(1)e.m.charge

Electron c fermion 1 2 -1

Spin magnetic moment � boson 1 3 0

Chargon  fermion 2 1 -1

Spinon R or z boson 2̄ 2 0

Higgs H boson 3 1 0

TABLE II. Quantum numbers of the matter fields in the SU(2) Lattice gauge theory. The transformations

under the SU(2)’s are labelled by the dimension of the SU(2) representation, while those under the

electromagnetic U(1) are labeled by the U(1) charge. The spin correlations are characterized by � in

Eq. (3.2). The Higgs field is the transform of � into a rotating reference frame via Eq. (3.8).

frame27,31,32,44 along the local magnetic order, using a SU(2) rotation Ri and (spinless-)fermions

 i,s with s = ±,  
ci"

ci#

!
= Ri

 
 i,+

 i,�

!
, (3.3)

where

R†
iRi = RiR

†
i = 1. (3.4)

Note that this representation immediately introduces a SU(2) gauge invariance (distinct from the

global SU(2) spin rotation)
 
 i,+

 i,�

!
! Vi

 
 i,+

 i,�

!
(3.5)

Ri ! RiV
†
i , (3.6)

under which the original electronic operators remain invariant, ci↵ ! ci↵; here Vi(⌧) is a SU(2)

gauge-transformation acting on the s = ± index. So the  s fermions are SU(2) gauge fundamentals,

carrying the physical electromagnetic global U(1) charge, but not the SU(2) spin of the electron:

they are the fermionic “chargons” of this theory, and the density of the  s is the same as that

of the electrons. The bosonic R fields also carry the global SU(2) spin (corresponding to left

multiplication of R) but are electrically neutral: they are the bosonic “spinons”. We will relate

them below to the spinons, z↵, of the CP1 model in Eq. (2.4). A useful summary of the gauge and

global symmetry quantum numbers of the various fields is in Table II.

Inserting the parameterization in Eq. (3.3) into Hint, we can write Eq. (3.2) as

Hint = ��
X

i

Ha(i) †
i,s �

a
ss0  i,s0 + VH (3.7)
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Lattice gauge theory

• Higgs phase: hHi 6= 0 leads to reconstructed
“small” Fermi surfaces. Because H 2 SO(3)
and ⇡1(SO(3) = Z2 there can be Z2 flux through
the hole of a torus i.e. Z2 topological order.

• Confining phase: Color superconductor —model
of the overdoped superconductor.
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