

Subir Sachdev, Harvard University and Perimeter Institute

Quantum entanglement

Hydrogen atom:

Hydrogen molecule:

Einstein-Podolsky-Rosen "paradox" (1935): Measurement of one particle instantaneously determines the state of the other particle arbitrarily far away

Quantum entanglement

Quantum entanglement

Strange metals

High temperature superconductors • Cu²⁺,Cu³⁺

 $YBa_2Cu_3O_{6+x}$

Power Efficiency/Capacity/Stability

Power Bottlenecks

Accommodate Renewable Power

Efficient Rotating Machines

Information Technology

Next Generation HEP

Ultra-High Magnetic Fields

Medical

Transport

High temperature superconductors • Cu²⁺,Cu³⁺

 $YBa_2Cu_3O_{6+x}$

Antiferromagnet

Figure: K. Fujita and J. C. Seamus Davis

Superconductivity

Superconductivity

Superconductivity

Superconductivity

High temperature superconductivity!

High temperature superconductivity!

$$= |\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle$$

High temperature superconductivity!

High temperature superconductivity!

High temperature superconductivity!

High temperature superconductivity!

$$= |\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle$$

High temperature superconductivity!

$$= |\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle$$

Strange metal

Entangled electrons lead to "strange" temperature dependence of resistivity and other properties

Figure: K. Fujita and J. C. Seamus Davis

• Quasiparticles are additive excitations: The low-lying excitations of the many-body system can be identified as a set $\{n_{\alpha}\}$ of quasiparticles with

energy ε_{α}

$$E = \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \dots$$

• Quasiparticles are additive excitations: The low-lying excitations of the many-body system can be identified as a set $\{n_{\alpha}\}$ of quasiparticles with energy ε_{α}

$$E = \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \dots$$

• **Note:** The electron liquid in one dimension and the fractional quantum Hall state both have quasiparticles; however, the quasiparticles do not have the same quantum numbers as an electron.

• Quasiparticles eventually collide with each other. Such collisions eventually leads to thermal equilibration in a chaotic quantum state, but the equilibration takes a long time. In a Fermi liquid, this time is of order $\hbar E_F/(k_BT)^2$ as $T \to 0$, where E_F is the Fermi energy.

Quantum matter without quasiparticles

The complex quantum entanglement in the strange metal does not allow for any quasiparticle excitations.

Quantum matter without quasiparticles The complex quantum entanglement in the strange metal does not allow for any quasiparticle excitations.

• Systems without quasiparticles, like the strange metal, reach quantum chaos much more quickly than those with quasiparticles.

Quantum matter without quasiparticles

The complex quantum entanglement in the strange metal does not allow for any quasiparticle excitations.

- Systems without quasiparticles, like the strange metal, reach quantum chaos much more quickly than those with quasiparticles.
- There is an lower bound on the phase coherence time (τ_{φ}) , and the time to many-body quantum chaos (τ_L) in all many-body quantum systems as $T \to 0$:

$$\tau_{\varphi} \geq C \frac{\hbar}{k_B T} \qquad \text{(SS, 1999)}$$

$$\tau_L \geq \frac{\hbar}{2\pi k_B T} \qquad \text{(Maldacena, Shenker, Stanford, 2015)}$$

So e.g. we cannot have $\tau_{\varphi} \sim \hbar/\sqrt{Jk_BT}$ where J is a microscopic coupling.

Quantum matter without quasiparticles

The complex quantum entanglement in the strange metal does not allow for any quasiparticle excitations.

- Systems without quasiparticles, like the strange metal, reach quantum chaos much more quickly than those with quasiparticles.
- There is an lower bound on the phase coherence time (τ_{φ}) , and the time to many-body quantum chaos (τ_L) in all many-body quantum systems as $T \to 0$:

$$\tau_{\varphi} \geq C \frac{\hbar}{k_B T} \qquad \text{(SS, 1999)}$$

$$\tau_L \geq \frac{\hbar}{2\pi k_B T} \qquad \text{(Maldacena, Shenker, Stanford, 2015)}$$

So e.g. we cannot have $\tau_{\varphi} \sim \hbar/\sqrt{Jk_BT}$ where J is a microscopic coupling.

• In the strange metal the inequalities become equalities as $T \to 0$, and the time $\hbar/(k_B T)$ influences numerous observables.

- Strange metals have no quasiparticle description.
- Their entropy is proportional to their volume.
- They relax to local thermal equilibrium in the fastest possible time $\sim \hbar/(k_BT)$.

Strange metals

Black

Black Holes

Objects so dense that light is gravitationally bound to them.

In Einstein's theory, the region inside the black hole horizon is disconnected from the rest of the universe.

Horizon radius
$$R = \frac{2GM}{c^2}$$

On September 14, 2015, LIGO detected the merger of two black holes, each weighing about 30 solar masses, with radii of about 100 km, 1.3 billion light years away

Black Holes + Quantum theory

Around 1974, Bekenstein and Hawking showed that the application of the quantum theory across a black hole horizon led to many astonishing conclusions

There is long-range quantum entanglement between the inside and outside of a black hole

Hawking used this to show that black hole horizons have an entropy and a temperature

(because to an outside observer, the state of the electron inside the black hole is an unknown)

The Hawking temperature $k_B T_H = \frac{\hbar^2}{8\pi M \ell_P^2}$ and

the Bekenstein-Hawking (BH) black hole entropy $\frac{S_{BH}}{k_B} = \frac{A}{4\ell_P^2}$

where $\ell_P = \sqrt{\hbar G/c^3}$ in the Planck length, and A is the surface area of the black hole. Note the entropy is proportional to the surface area rather than the volume.

• The Hawking temperature, T_H influences the radiation from the black hole at the very last stages of the ring-down (not observed so far). The ring-down (approach to thermal equilibrium) happens very rapidly in a time $\sim \frac{\hbar}{k_B T_H} = \frac{8\pi GM}{c^3} \sim 8$ milliseconds.

Black

- Black holes have an entropy and a temperature, T_H .
- The entropy is proportional to their surface area.
- They relax to thermal equilibrium in a time $\sim \hbar/(k_B T_H)$.

- Strange metals have no quasiparticle description.
- Their entropy is proportional to their volume.
- They relax to local thermal equilibrium in the fastest possible time $\sim \hbar/(k_BT)$.

Strange metals

Black holes Strange
metals

A "toy model" which is both a strange metal and a black hole!

Pick a set of random positions

Place electrons randomly on some sites

$$H = \frac{1}{(N)^{1/2}} \sum_{i,j=1}^{N} t_{ij} c_i^{\dagger} c_j + \dots$$

$$c_i c_j + c_j c_i = 0 \quad , \quad c_i c_j^{\dagger} + c_j^{\dagger} c_i = \delta_{ij}$$

$$\frac{1}{N} \sum_i c_i^{\dagger} c_i = \mathcal{Q}$$

 t_{ij} are independent random variables with $\overline{t_{ij}} = 0$ and $|t_{ij}|^2 = t^2$

Fermions occupying the eigenstates of a $N \times N$ random matrix

Let ε_{α} be the eigenvalues of the matrix t_{ij}/\sqrt{N} . The fermions will occupy the lowest $N\mathcal{Q}$ eigenvalues, upto the Fermi energy E_F . The density of states is $\rho(\omega) = (1/N) \sum_{\alpha} \delta(\omega - \varepsilon_{\alpha})$.

Quasiparticle excitations with spacing $\sim 1/N$

There are 2^N many body levels with energy

$$E = \sum_{\alpha=1}^{N} n_{\alpha} \varepsilon_{\alpha},$$

where $n_{\alpha} = 0, 1$. Shown are all values of E for a single cluster of size N = 12. The ε_{α} have a level spacing $\sim 1/N$.

Pick a set of random positions

Place electrons randomly on some sites

This describes both a strange metal and a black hole!

(See also: the "2-Body Random Ensemble" in nuclear physics; did not obtain the large N limit; T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Rev. Mod. Phys. **53**, 385 (1981))

$$H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} J_{ij;k\ell} c_i^{\dagger} c_j^{\dagger} c_k c_{\ell} - \mu \sum_i c_i^{\dagger} c_i$$
$$c_i c_j + c_j c_i = 0 \quad , \quad c_i c_j^{\dagger} + c_j^{\dagger} c_i = \delta_{ij}$$
$$\mathcal{Q} = \frac{1}{N} \sum_i c_i^{\dagger} c_i$$

 $J_{ij;k\ell}$ are independent random variables with $\overline{J_{ij;k\ell}} = 0$ and $|J_{ij;k\ell}|^2 = J^2$ $N \to \infty$ yields critical strange metal.

S. Sachdev and J.Ye, PRL **70**, 3339 (1993)

A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)

The Sachdev-Ye-Kitaev (SYK) model

There are 2^N many body levels with energy E, which do not admit a quasiparticle decomposition. Shown are all values of E for a single cluster of size N=12. The $T\to 0$ state has an entropy S_{GPS} with

$$\frac{S_{GPS}}{N} = \frac{G}{\pi} + \frac{\ln(2)}{4} = 0.464848...$$

$$< \ln 2$$

Non-quasiparticle excitations with spacing $\sim e^{-S_{GPS}}$

where G is Catalan's constant, for the half-filled case Q = 1/2.

GPS: A. Georges, O. Parcollet, and S. Sachdev, PRB **63**, 134406 (2001)

A simple model of a metal with quasiparticles

Quasiparticle excitations with spacing $\sim 1/N$

There are 2^N many body levels with energy

$$E = \sum_{\alpha=1}^{N} n_{\alpha} \varepsilon_{\alpha},$$

where $n_{\alpha} = 0, 1$. Shown are all values of E for a single cluster of size N = 12. The ε_{α} have a level spacing $\sim 1/N$.

The Sachdev-Ye-Kitaev (SYK) model

There are 2^N many body levels with energy E, which do not admit a quasiparticle decomposition. Shown are all values of E for a single cluster of size N=12. The $T\to 0$ state has an entropy S_{GPS} with

$$\frac{S_{GPS}}{N} = \frac{G}{\pi} + \frac{\ln(2)}{4} = 0.464848...$$

$$< \ln 2$$

Non-quasiparticle excitations with spacing $\sim e^{-S_{GPS}}$

where G is Catalan's constant, for the half-filled case Q = 1/2.

GPS: A. Georges, O. Parcollet, and S. Sachdev, PRB **63**, 134406 (2001)

• The SYK model has a non-zero entropy, $S_{GPS} \propto N$ as $T \to 0$.

A. Georges, O. Parcollet, and S. Sachdev, PRB **63**, 134406 (2001)

- The SYK model has a non-zero entropy, $S_{GPS} \propto N$ as $T \to 0$.

 A. Georges, O. Parcollet, and S. Sachdev, PRB **63**, 134406 (2001)
- The SYK model has a phase-coherence time $\tau_{\varphi} \sim \hbar/(k_B T)$.

O. Parcollet and A. Georges, PRB **59**, 5341 (1999)

And $\tau_L = \hbar/(2\pi k_B T)$, the smallest possible value.

Kitaev, unpublished; J. Maldacena, D. Stanford, arXiv:1604.07818

- The SYK model has a non-zero entropy, $S_{GPS} \propto N$ as $T \to 0$.

 A. Georges, O. Parcollet, and S. Sachdev, PRB **63**, 134406 (2001)
- The SYK model has a phase-coherence time $\tau_{\varphi} \sim \hbar/(k_B T)$.

O. Parcollet and A. Georges, PRB **59**, 5341 (1999)

And $\tau_L = \hbar/(2\pi k_B T)$, the smallest possible value. Kitaev, unpublished; J. Maldacena, D. Stanford, arXiv:1604.07818

These properties indicate, as in the AdS/CFT correspondence, the SYK model is a holographic representation of a black hole, and the black hole entropy $S_{BH} = S_{GPS}$.

 $\mathbb{T}^2 \Rightarrow$ two-dimensional torus

The SYK model has "dual" description in which an extra spatial dimension, ζ , emerges. The curvature of this "emergent" spacetime is described by Einstein's theory of general relativity

The BH entropy is proportional to the size of \mathbb{T}^2 , and hence the surface area of the black hole. Mapping to SYK applies when temperature $\ll 1/(\text{size of }\mathbb{T}^2)$.

Same long-time effective action for energy and number fluctuations, involving Schwarzian derivatives of time reparameterizations $f(\tau)$.

 $\zeta = \infty$

 $\begin{array}{c} \text{charge} \\ \text{density } \mathcal{Q} \end{array}$

Einstein-Maxwell theory

+ cosmological constant

A. Kitaev, unpublished, J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857; K. Jensen, arXiv:1605.06098; J. Engelsoy, T.G. Mertens, and H. Verlinde, arXiv:1606.03438

Bekenstein-Hawking black hole entropy

 $\zeta = \infty$

$AdS_2 \times \mathbb{T}^2$ $ds^2 = (d\zeta^2 - dt^2)/\zeta^2 + d\vec{x}^2$ Gauge field: $A = (\mathcal{E}/\zeta)dt$

An extra spatial dimension emerges from quantum entanglement!

GPS entropy

SS, PRL 105, 151602 (2010)

Tensor network of hierarchical entanglement

String theory near a "D-brane"

D-dimensional

 \vec{x}

→ space

String theory near a "D-brane"

 \vec{x}

D-dimensional

space

of SYK model or string theory

Quantum entanglement

Black holes Strange
metals

A "toy model" which is both a strange metal and a black hole!

Subir Sachdev, Harvard University and Perimeter Institute