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Modern phases of quantum matter:

|. Ground states disconnected from independent
electron states: many-particle entanglement

2. Boltzmann-Landau theory of quasiparticles

Famous example:

The fractional guantum Hall effect of electrons in two
dimensions (e.g. in graphene) in the presence of a
strong magnetic field. The ground state is described
by Laughlin’s wavefunction, and the excitations are
quasiparticles which carry fractional charge.
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The Superfluid-Insulator transition

Boson Hubbard model

Bosons, b; hopping on the sites j of a square lattice with Hamiltonian

U
—thIbJ -+ 5 an(nj — 1)
() j

H

The boson operators obey the commutation relation
bj,bL] = 6
We restrict attention to the sector of the Fock space with

Z n; = integer multiple of the number of sites
J
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Insulator (the vacuum)
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Superfluid

at small repulsion between bosons

'Ground state) =
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A A~ Ut



U ~ br—g — a complex field representing the
Bose-Einstein condensate ot the superfluid

() #0
Superfluid

(U) =0
Insulator

A A~ Ut
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/D\I!(r, 7) exp (—/d%dr 10, W% + ¢V, 0] + V(‘I’)})

(A= AW+ u (|9]?)

A conformal field theory

in 241 spacetime dimensions (CFT3):
the O(2) Wilson-Fisher CFT3

(W) # 0 (V) =0

Superfluid Insulator

A~ Ut
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V@) = (A=A +u ()’

The coupling ©v — u*,
the renormalization group

A conformal field theory

fixed point, for the CFT3. in 2+1 spacetime dimensions (CFT3):
the O(2) Wilson-Fisher CFT3

(W) #0 (W) =0

Superfluid Insulator

A~ Ut



Basic characteristics of CETs
Primary operators of CFT, O,(x), obey (at T = 0):

where A, is their scaling dimension. Their “interactions” are determined by
the OPE (considering scalar operators only)

The values of {Ag, fapeH determine (in principle) all observable properties

of the CFT, as constrained by conformal Ward identities. For the Wilson-
Fisher CFT3, systematic methods exist to compute (in principle) all the
{Aqg, fabe}, and we will assume this data is known. This knowledge will be
taken as an input to the computation of the finite 7' dynamics



Basic characteristics of CFTs

Important sets of operators are the energy-momentum tensor 7),,,
and conserved currents of continuous symmetries J,. For CFT2s,
the 7, obey the Virasoro algebra, while the J, obey the Kac-
Moody algebra: in particular (z = x + i7)

k
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where k is the (integer) central charge.



Basic characteristics of CFTs

Important sets of operators are the energy-momentum tensor 7),,,
and conserved currents of continuous symmetries J,. For CFT2s,
the 7, obey the Virasoro algebra, while the J, obey the Kac-
Moody algebra: in particular (z = x + i7)

k

(T(2)1(0)) = =5
where k is the (integer) central charge.

CFT3s are much more complicated. In momentum space we

have

(Ju(p)J1(0)) = =0 |p| (% p;fv)

where 0., is (almost certainly) an irrational number. From the
Kubo formula, we can show that o, is equal to the conductivity,
o(w), (in units of e?/h) of the CFT3. So the Wilson-Fisher CFT3
(and also the Bose-Hubbard model) has a universal, frequency-
independent, conductivity.



Basic characteristics of CFTs

We will need higher-order terms in the OPE of 2 currents in CFT'3s.
This has the general form

where O is the scalar operator of dimension A = 3 — 1/v (it tunes
away from the critical point), and C, Cp, v are OPE coefficients.
There is a conjectured exact bound |y| < 1/12.

E. Katz, S. Sachdey, E. Sorensen, and W.Witczak-Krempa, arXiv:1409.384 |
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Quantum y
critical

“Boltzmann”
theory of Nambu-
Goldstone and
vortices

Boltzmann

theory of
particles/holes
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Conformal field theory in
2+1 dimensions at 7>0

¢ Quantum 7
\ critical ,




Conformal field theory in
2+1 dimensions at 7>0

Boltzmann theory of
particles/holes/vortices
does not apply

Insulator
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Quasiparticle view of guantum criticality (Boltzmann equation):
Electrical transport for a free CFT3

A

/[N T5(w)) .

Re|o|

w/T



Quasiparticle view of guantum criticality (Boltzmann equation):
Electrical transport for a (weakly) interacting CFT3

— *\ 2
Relo(w)] O(1/(u*)")
O((u*)?),
where u™ 1s the
— fixed point - 0 o
Interaction

1 o,
kgT

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).



Quasiparticle view of guantum criticality (Boltzmann equation):
Electrical transport for a (weakly) interacting CFT3

oo = 27 X (1/16) + O(1/N)
in a vector large /N limit

1 o,

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997). kBT



Quasiparticle view of guantum criticality (Boltzmann equation):
Electrical transport for a (weakly) interacting CFT3

Re[o(w),

g(0) = 0.523N + ...
in a vector large NV limit

hw

S. Sachdev, Phys. Rev. B 57, 7157 (1998) —
W. Witczak-Krempa, P. Ghaemi, T. Senthil, and Yong Baek Kim, ]{j B T
Phys. Rev. B 86, 24102 (2012)
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Dynamics without quasiparticles

@ Start with strongly interacting
CFT without particle- or wave-
like excitations

@ Compute scaling dimensions
and OPE co-efficients of
operators of the CFT
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Basic characteristics of CFTs

We will need higher-order terms in the OPE of 2 currents in CFT'3s.
This has the general form

where O is the scalar operator of dimension A = 3 — 1/v (it tunes
away from the critical point), and C, Cp, v are OPE coefficients.
There is a conjectured exact bound |y| < 1/12.

For 1" > 0, compute the conductivity
by taking thermal average of the OPE.

E. Katz, S. Sachdey, E. Sorensen, and W.Witczak-Krempa, arXiv:1409.384 |



Basic characteristics of CFTs

The thermal average of the OPE yields for w > T

where b o are universal numbers.
The bare OPE expansion yields no information for
w ~ 1" or smaller.

For the O(2) Wilson-Fisher CFT3, v ~ 0.6717(1).

For 1" > 0, compute the conductivity
by taking thermal average of the OPE.

E. Katz, S. Sachdey, E. Sorensen, and W.Witczak-Krempa, arXiv:1409.384 |



Quantum Monte Carlo for lattice model of integer currents
(Villain model)

%a I I I I I I I I I
- — Fit : 0.36038 + 0.053/n'°° — 0.01/n>
0.40 - O QMC Villain Model ]
S ool
0.39|-
~— _
N\
éi I
2 038
N——" B
E _
] 0.37 _—
0.36 -
0

Excellent agreement with OPE

E. Katz, S. Sachdey, E. Sorensen, and W.Witczak-Krempa, arXiv:1409.384 |
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Traditional CMT

@ |dentify quasiparticles
and their dispersions

@ Compute scattering
matrix elements of
quasiparticles (or of
collective modes)

@ These parameters are
Input into a quantum
Boltzmann equation

@ Deduce dissipative and
dynamic properties at non-
zero temperatures

Dynamics without quasiparticles

@ Start with strongly interacting
CFT without particle- or wave-
like excitations

@ Compute scaling dimensions
and OPE co-efficients of
operators of the CFT

@ Relate OPE co-efficients to
couplings of an effective
gravitational theory on AdS

@ Non-zero T dynamics of CFT
maps to dynamics of a “horizon”
in (Einstein’s) gravitational
theory



Field theories in d + 1 spacetime dimensions are
characterized by couplings g which obey the renor-
malization group equation

dg
U@ = B(g)

where u is the energy scale. The RG equation is

local in energy scale, i7.e. the RHS does not depend

upon u.



J. McGreevy, arXiv0909.0518
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Key idea: = Implement r as an extra dimen-
sion, and map to a local theory in d + 2 spacetime
dimensions.



For a relativistic CFT in d spatial dimensions, the
metric in the holographic space is uniquely fixed
by demanding the following scale transformaion

(i=1...d)

x, > Cx; , t—( , ds—ds



For a relativistic CFT in d spatial dimensions, the
metric in the holographic space is uniquely fixed
by demanding the following scale transformaion

(1 =1...d)
x, > Cx; , t—( , ds—ds

This gives the unique metric

ds® = :2 (—dt* + dr® + dz7)

Reparametrization invariance in r has been used

to the prefactor of dz? equal to 1/r%. This fixes
r — (r under the scale transformation. This is
the metric of the space AdS 1.



AdS/CFT correspondence at zero temperature
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AdS/CFT correspondence at zero temperature

AdSy

The symmetry group
of isometries of AdSy
maps to the group

of conformal sym-
metries of the CFT'3

RZ 1
Minkowski

" <

This emergent spacetime is a solution of Einstein gravity
with a negative cosmological constant




AdS/CFT correspondence at zero temperature

Consider a CFT in D space-time dimensions with primary
operators O, (x) with scaling dimension A,. This is pre-
sumed to be equivalent to a dual gravity theory on AdSp.1
with action Spuk. The bulk theory has fields ¢, (a,r) cor-
responding to each primary operator. The CFT and the
bulk theory are related by the GKPW ansatz

(o (o).,

where the boundary condition is

lim bo(x, 1) = rP 2P0 ().



AdS/CFT correspondence at zero temperature

For every primary operator O(x) in the CF'T, there is
a corresponding field ¢(x,r) in the bulk (gravitational)
theory. For a scalar operator O(ax) of dimension A, the
correlators of the boundary and bulk theories are related

by

(O(x1) ... O(xn)) cpr =

Z" }1_1)1%) rl_A e fr',,;A (@(@1,71) - O(Try "n) ) i

where the “wave function renormalization” factor 2 =

(2A — D).



AdS/CFT correspondence at zero temperature

For a U(1) conserved current J, of the CF'T, the corre-
sponding bulk operator is a U(1) gauge field A,,. With a
Maxwell action for the gauge field

we have the bulk-boundary correspondence

<JM(2131) c e JV(ZB”»CFT —

(Zggf)” }1_{1(1) r%_D . .Ti—D (Au(x1,m1) ... Ap(y, Tn)>bu1k

with 7 =D — 2.



AdS/CFT correspondence at zero temperature

A similar analysis can be applied to the stress-energy
tensor of the CFT, T),,. Its conjugate field must be a spin-
2 field which is invariant under gauge transtormations: it
is natural to identify this with the change in metric of the
bulk theory. We write dg,,, = (L*/r*)x ., and then the
bulk-boundary correspondence is now given by

(Ty (1) . Toor (%)) ooy =

ZI2\" .. _5  _p
- }1_)]{% L T X (15 71) e X o (B Tr ) )y e

with Z = D.



AdS/CFT correspondence at zero temperature

So the minimal bulk theory for a CF'T with a conserved
U(1) current is the Finstein-Mazwell theory with a cosmo-
logical constant

T'his action is characterized by two dimensionless parame-
ters: gy and L?/k?, which are related to the conductivity
0~ and the central charge of the CFT



AdS/CFT correspondence at zero temperature

To fully match the OPE of the current operators, we need

an Finstein-Maxwell- Weyl-scalar theory

where Cpeq is the Weyl tensor. Stability constraints on
this action restrict |y| < 1/12, in agreement with results
from the CF'T3. The scalar field ¢ is conjugate to the CF'T

operator O with scaling dimension 3 — 1/v, which

fixes its
4 of the

mass m. The coupling « is determined by the OP.
currents with O.

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
D. Chowdhury, S. Raju, S. Sachdev, A. Singh, and P. Strack, Physical Review B 87, 085138 (2013).

E. Katz, S. Sachdey, E. Sorensen, and W.Witczak-Krempa, arXiv:1409.384 1
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There is a family of
solutions of Einstein
gravity which
describe non-zero

temperatures
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AdS/CFT correspondence at non-zero temperatures

AdS4-Schwarzschild black-brane

vy e—

R A CFT3

at a non-zero
temperature:

3h
kr'l = ——.
B 47 R

Black-brane at
Hawking
temperature 1




AdS/CFT correspondence at non-zero temperatures

AdS4-Schwarzschild black-brane

y e—————————

R A CFT3

at a non-zero

temperature:

3h
M= ——.
g 47 R

Black-brane at Fom A A A e e A e A e "

Hawking :  Friction of CFT3 =
temperature T waves falling into
black brane




Conductivity of Einstein-Maxwell theory

Relo(w)]/(e”/h)

w/2xT

C. P. Herzog, P. Kovtun. S. Sachdev, and D. T. Son, Physical Review D 75, 085020 (2007)



Numerical solution of Einstein-Maxwell-VVeyl-scalar
theory + OPE info from OMC

B X o e B B B
Nio.ss; -
0.50F -
0.45F =

0.40F E

0.35;— —' %
T T T T

0'300 2 4 6 8

w/2nT

Relo(w)]/(e

E. Katz, S. Sachdey, E. Sorensen, and W.Witczak-Krempa, arXiv: 1409.384 |



Quasiparticle view of guantum criticality (Boltzmann equation):
Electrical transport for a (weakly) interacting CFT3

d(0) = 0.523N + ...
in a vector large IV limit

Re|o(w)]
oo = 27 X (1/16) + O(1/N)
in a vector large IV limit

hw

S. Sachdev, Phys. Rev. B 57, 7157 (1998) —
W. Witczak-Krempa, P. Ghaemi, T. Senthil, and Yong Baek Kim, ]{j B T
Phys. Rev. B 86, 24102 (2012)



Numerical solution of Einstein-Maxwell-VVeyl-scalar
theory + OPE info from OMC
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E. Katz, S. Sachdey, E. Sorensen, and W.Witczak-Krempa, arXiv: 1409.384 |



@ Strongly-coupled quantum criticality leads to a novel
regime of quantum dynamics without quasiparticles.

@ The simplest examples are conformal field theories
in 2+ 1 dimensions.

@ Quantitative predictions for transport obtained by
combining the operator product expansion, quantum
Monte Carlo, and the dynamics of black branes.




