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Foundations of quantum many body theory:	



1. Ground states connected adiabatically to	


independent electron states	



2. Quasiparticle structure of excited states
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Modern phases of quantum matter:	



1. Ground states disconnected from independent	


electron states: many-particle entanglement	



2. Boltzmann-Landau theory of quasiparticles

Famous example:

The fractional quantum Hall effect of electrons in two 
dimensions (e.g. in graphene) in the presence of a 

strong magnetic field. The ground state is described 
by Laughlin’s wavefunction, and the excitations are 

quasiparticles which carry fractional charge.
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The Superfluid-Insulator transition

Boson Hubbard model

Bosons, bj hopping on the sites j of a square lattice with Hamiltonian

H = �t
X

hiji

b†i bj +
U

2

X

j

nj(nj � 1)

nj ⌘ b†i bi

The boson operators obey the commutation relation

[bj , b
†
k] = �jk

We restrict attention to the sector of the Fock space with

X

j

nj = integer multiple of the number of sites



U � t

|Ground statei =
Y

i

b†i |0i

Insulator (the vacuum)  
at large repulsion between bosons
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|Ground statei =
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X

i

b†i

#N

|0i

U ⌧ t

Superfluid  
at small repulsion between bosons
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 ⇠ bk=0 ! a complex field representing the

Bose-Einstein condensate of the superfluid
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in 2+1 spacetime dimensions (CFT3):

the O(2) Wilson-Fisher CFT3
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A conformal field theory
in 2+1 spacetime dimensions (CFT3):

the O(2) Wilson-Fisher CFT3

The coupling u ! u⇤
,

the renormalization group

fixed point, for the CFT3.



Basic characteristics of CFTs
Primary operators of CFT, O

a

(x), obey ( at T = 0):

hO
a

(x)O
b

(0)i = �
ab

|x|2�a

where �
a

is their scaling dimension. Their “interactions” are determined by
the OPE (considering scalar operators only)

lim
x

0!x

hO
a

(x0)O
b

(x)O
c

(0)i = f
abc

|x|�a+�b+�c

The values of {�
a

, f
abc

} determine (in principle) all observable properties
of the CFT, as constrained by conformal Ward identities. For the Wilson-
Fisher CFT3, systematic methods exist to compute (in principle) all the
{�

a

, f
abc

}, and we will assume this data is known. This knowledge will be
taken as an input to the computation of the finite T dynamics

Oa

Ob

Ocfabc



Basic characteristics of CFTs

Important sets of operators are the energy-momentum tensor Tµ⌫ ,
and conserved currents of continuous symmetries Jµ. For CFT2s,
the Tµ⌫ obey the Virasoro algebra, while the Jµ obey the Kac-
Moody algebra: in particular (z = x+ i⌧)

hJ(z)J(0)i = k

z

2

where k is the (integer) central charge.
CFT3s are much more complicated. In momentum space we

have

hJµ(p)J⌫(0)i = ��1|p|
✓
�µ⌫ � pµp⌫

p

2

◆

where �1 is (almost certainly) an irrational number. From the
Kubo formula, we can show that �1 is equal to the conductivity ,
�(!), (in units of e2/~) of the CFT3. So the Wilson-Fisher CFT3
(and also the Bose-Hubbard model) has a universal, frequency-
independent, conductivity.
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Basic characteristics of CFTs

We will need higher-order terms in the OPE of 2 currents in CFT3s.
This has the general form

lim
|!|�p

J
x

(!)J
x

(�! + p) = �|!|�1 �(3)(p)� C
|!|��1

O(p)

+
C
T

!2

h
T
xx

(p)� T
yy

(p)� 12�(T
xx

(p) + T
yy

(p))
i
+ · · ·

where O is the scalar operator of dimension � = 3� 1/⌫ (it tunes
away from the critical point), and C, C

T

, � are OPE coe�cients.
There is a conjectured exact bound |�|  1/12.

E. Katz, S. Sachdev, E. Sorensen, and W. Witczak-Krempa, arXiv:1409.3841
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 Identify quasiparticles 
and their dispersions	
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Boltzmann equation	


!
 Deduce dissipative and 

dynamic properties at non-
zero temperatures 
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�/T

⇠ T �(!)

Quasiparticle view of quantum criticality (Boltzmann equation):	


Electrical transport for a free CFT3

Re[�]

�1



K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

~!
kBT

1

Re[�(!)]

O((u⇤
)

2
),

where u⇤
is the

fixed point

interaction

O(1/(u⇤)2)

Quasiparticle view of quantum criticality (Boltzmann equation):	


Electrical transport for a (weakly) interacting CFT3

�1



K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

~!
kBT

1

Re[�(!)]

Quasiparticle view of quantum criticality (Boltzmann equation):	


Electrical transport for a (weakly) interacting CFT3

�1

�1 = 2⇡ ⇥ (1/16) +O(1/N)

in a vector large N limit



S. Sachdev, Phys. Rev. B 57, 7157 (1998)                                                                    
W. Witczak-Krempa, P. Ghaemi, T. Senthil, and Yong Baek Kim,                              
Phys. Rev. B 86, 24102 (2012)

~!
kBT

1

Re[�(!)]

Quasiparticle view of quantum criticality (Boltzmann equation):	


Electrical transport for a (weakly) interacting CFT3

1/N
�1

�(0) = 0.523N + . . .
in a vector large N limit
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Dynamics without quasiparticles
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Basic characteristics of CFTs

E. Katz, S. Sachdev, E. Sorensen, and W. Witczak-Krempa, arXiv:1409.3841

For T > 0, compute the conductivity
by taking thermal average of the OPE.

The thermal average of the OPE yields for ! � T

�(!) = �1 + b1

✓
T

!

◆3�1/⌫

+ b2

✓
T

!

◆3

+ . . .

where b1,2 are universal numbers.
The bare OPE expansion yields no information for
! ⇠ T or smaller.
For the O(2) Wilson-Fisher CFT3, ⌫ ⇡ 0.6717(1).



Quantum Monte Carlo for lattice model of integer currents 
(Villain model)

0 2 4 6 8 10 12 14 16 18 20
0.36

0.37

0.38

0.39

0.40 Fit: 0.36038+0.053/n1.516-0.01/n3

QMC Villain Model
2⇡

�
(i

!
n
)/

�
Q

n = !n/(2⇡T )

Fit : 0.36038 + 0.053/n1.516 � 0.01/n3

QMC Villain Model

FIG. 1. QMC results (open circles) at K
c

= 0.3330671 with µ = 0 for the frequency dependent
conductivity �(i!

n

). All results have first been extrapolated to L ! 1 and subsequently to T ! 0
(L

⌧

! 1). The solid blue line shows a fit to the QMC data for n = 1, . . . , 6 of the form 2⇡�/�
Q

=
0.36038 + 0.053/n1.516 � 0.01/n3 with n = !

n

/(2⇡T ) the Matsubara index.

be applicable. Inserting appropriate powers of 2⇡, the fit in Fig. 1 can be converted to a fit to

Eq. (4) and we find fitted values of �1, ⌫, b1, and b2 as follows

2⇡�1 = 0.3603(3)

⌫ = 0.67(3)

b1 = 0.137(6)

b2 = �0.4(1) , (29)

where we only quote statistical errors arising from the fit. We comment on these values in turn:

• The value of 2⇡�1 is in excellent agreement with existing results [2, 7, 9]. Comparing with

the large N result in Eq. (8), the N = 1 value is 0.39, while the 1/N corrected expression

evaluated at N = 2 yields 0.25.

• Our fits reliably determine that ⌫ is slightly larger than 2/3, and is in good agreement with

previous numerical studies [29–31].

• For b1, we can only compare with the N = 1 result obtained in Section II. From Eqs. (24),

(15) and (17), or equivalently from Eq. (C12), we obtain b1 = ⇥2/4 = 0.23.

12

E. Katz, S. Sachdev, E. Sorensen, and W. Witczak-Krempa, arXiv:1409.3841

Excellent agreement with OPE
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like excitations	


!
 Compute scaling dimensions 

and OPE co-efficients of 
operators of the CFT	


!
 Relate OPE co-efficients to 

couplings of an effective 
gravitational theory on AdS	


!
 Non-zero T dynamics of CFT 

maps to dynamics of a “horizon” 
in (Einstein’s) gravitational 
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Dynamics without quasiparticles



Field theories in d + 1 spacetime dimensions are
characterized by couplings g which obey the renor-
malization group equation

u
dg

du
= �(g)

where u is the energy scale. The RG equation is
local in energy scale, i.e. the RHS does not depend
upon u.



u

J. McGreevy, arXiv0909.0518



r

J. McGreevy, arXiv0909.0518



Key idea: ) Implement r as an extra dimen-

sion, and map to a local theory in d + 2 spacetime

dimensions.

r



For a relativistic CFT in d spatial dimensions, the

metric in the holographic space is uniquely fixed

by demanding the following scale transformaion

(i = 1 . . . d)

xi ! ⇣xi , t ! ⇣t , ds ! ds

This gives the unique metric

ds

2
=

1

r

2

�
�dt

2
+ dr

2
+ dx

2
i

�

Reparametrization invariance in r has been used

to the prefactor of dx

2
i equal to 1/r

2
. This fixes

r ! ⇣r under the scale transformation. This is

the metric of the space AdSd+2.
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The symmetry group

of isometries of AdS4

maps to the group

of conformal sym-

metries of the CFT3

AdS/CFT correspondence at zero temperature

ds

2 =

✓
L

r

◆2 ⇥
dr

2 � dt

2 + dx

2 + dy

2
⇤
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Z
d

4
x

p
�g


1

22

✓
R+

6

L

2

◆�

xi

This emergent spacetime is a solution of Einstein gravity 
with a negative cosmological constant

The symmetry group

of isometries of AdS4

maps to the group

of conformal sym-

metries of the CFT3

AdS/CFT correspondence at zero temperature



AdS/CFT correspondence at zero temperature

Consider a CFT in D space-time dimensions with primary

operators Oa(x) with scaling dimension �a. This is pre-

sumed to be equivalent to a dual gravity theory on AdSD+1

with action Sbulk. The bulk theory has fields �a(x, r) cor-
responding to each primary operator. The CFT and the

bulk theory are related by the GKPW ansatz

Z
D�a exp (�Sbulk)

����
bdy

=

⌧
exp

✓Z
dDx�a0(x)Oa(x)

◆�

CFT

where the boundary condition is

lim

r!0
�a(x, r) = rD���a0(x).



1

For every primary operator O(x) in the CFT, there is

a corresponding field �(x, r) in the bulk (gravitational)

theory. For a scalar operator O(x) of dimension �, the

correlators of the boundary and bulk theories are related

by

hO(x1) . . . O(xn)iCFT =

Zn
lim

r!0
r��
1 . . . r��

n h�(x1, r1) . . .�(xn, rn)ibulk

where the “wave function renormalization” factor Z =

(2��D).

AdS/CFT correspondence at zero temperature



2

For a U(1) conserved current Jµ of the CFT, the corre-

sponding bulk operator is a U(1) gauge field Aµ. With a

Maxwell action for the gauge field

SM =

1

4g2M

Z
dD+1x

p
gFabF

ab

we have the bulk-boundary correspondence

hJµ(x1) . . . J⌫(xn)iCFT =

(Zg�2
M )

n
lim

r!0
r2�D
1 . . . r2�D

n hAµ(x1, r1) . . . A⌫(xn, rn)ibulk

with Z = D � 2.

AdS/CFT correspondence at zero temperature



3

A similar analysis can be applied to the stress-energy

tensor of the CFT, Tµ⌫ . Its conjugate field must be a spin-

2 field which is invariant under gauge transformations: it

is natural to identify this with the change in metric of the

bulk theory. We write �gµ⌫ = (L2/r2)�µ⌫ , and then the

bulk-boundary correspondence is now given by

hTµ⌫(x1) . . . T⇢�(xn)iCFT =

✓
ZL2

2

◆n

lim

r!0
r�D
1 . . . r�D

n h�µ⌫(x1, r1) . . .�⇢�(xn, rn)ibulk ,

with Z = D.

AdS/CFT correspondence at zero temperature



4

So the minimal bulk theory for a CFT with a conserved

U(1) current is the Einstein-Maxwell theory with a cosmo-

logical constant

S =

1

4g2M

Z
d4x

p
gFabF

ab

+

Z
d4x

p
g


� 1

22

✓
R+

6

L2

◆�
.

This action is characterized by two dimensionless parame-

ters: gM and L2/2
, which are related to the conductivity

�(!) = K and the central charge of the CFT.

AdS/CFT correspondence at zero temperature

�1 and the central charge of the CFT



AdS/CFT correspondence at zero temperature

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

D. Chowdhury, S. Raju, S. Sachdev, A. Singh, and P. Strack, Physical Review B 87, 085138 (2013).
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To fully match the OPE of the current operators, we need
an Einstein-Maxwell-Weyl-scalar theory
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where Cabcd is the Weyl tensor. Stability constraints on
this action restrict |�| < 1/12, in agreement with results
from the CFT3. The scalar field ' is conjugate to the CFT
operator O with scaling dimension 3� 1/⌫, which fixes its
mass m. The coupling ↵ is determined by the OPE of the
currents with O.
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Conductivity of Einstein-Maxwell theory
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Numerical solution of Einstein-Maxwell-Weyl-scalar 
theory + OPE info from QMC
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Quasiparticle view of quantum criticality (Boltzmann equation):	


Electrical transport for a (weakly) interacting CFT3

1/N
�1

�(0) = 0.523N + . . .
in a vector large N limit

�1 = 2⇡ ⇥ (1/16) +O(1/N)

in a vector large N limit
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theory + OPE info from QMC
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 Strongly-coupled quantum criticality leads to a novel 
regime of quantum dynamics without quasiparticles.	


!

 The simplest examples are conformal field theories 
in 2+1 dimensions. 	


!

 Quantitative predictions for transport obtained by 
combining the operator product expansion, quantum 
Monte Carlo, and the dynamics of black branes.


