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Recent experiments on the cuprate
superconductors show:

 Proximity to msulating ground states
with density wave order at carrier density
0=1/8

* Vortex/anti-vortex fluctuations for a
wide temperature range in the normal state




The cuprate superconductor Ca,_  Na, CuO,Cl,

b
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Multiple order parameters: superfluidity and density wave.
Phases: Superconductors, Mott insulators, and/or supersolids

T. Hanaguri, C. Lupien, Y. Kohsaka, D.-H. Lee, M. Azuma, M. Takano,
H. Takagi, and J. C. Davis, Nature 430, 1001 (2004).



Distinct experimental charcteristics of underdoped cuprates at T > T,

Measurements of Nernst effect are well explained by a model
of a liquid of vortices and anti-vortices
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Distinct experimental charcteristics of underdoped cuprates at T > T,

STM measurements observe “density” modulations with a
period of = 4 lattice spacmgs
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LDOS of B128r2CaCu2()8+8 at 100 K.
M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, and A. Yazdani, Science, 303, 1995 (2004).



Vortex-induced LDOS of Bi,Sr,CaCu,0Og, integrated
from 1meV to 12meV at 4K

Vortices have
halos with
LDOS

modulations at a
period = 4 lattice
spacings

J. Hoffman E. W. Hudson, K. M. Lang,
V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, Prediction of VBS order near

and J. C. Davis, Science 295, 466 (2002). vortices: K. Park and S. Sachdev,
Phys. Rev. B 64, 184510 (2001).



Recent experiments on the cuprate
superconductors show:

 Proximity to isulating ground states
with density wave order at carrier density

0=1/8

* Vortex/anti-vortex fluctuations for a
wide temperature range in the normal state

Needed: A guantum theory of transitions

between superfluid/supersolid/insulating

phases at fractional filling, and a deeper
understanding of the role of vortices




Qutline

A. Superfluid-insulator transitions of bosons
on the square lattice at filling fraction f
Quantum mechanics of vortices in a

superfluid proximate to a commensurate Mott
Insulator

B. Extension to electronic models for the cuprate
superconductors

Dual vortex theories of the doped
(1) Quantum dimer model
(2)““Staggered flux’ spin liquid



A. Superfluid-insulator transitions of bosons
on the square lattice at filling fraction f

Quantum mechanics of vortices In a
superfluid proximate to a
commensurate Mott insulator



Bosons at density f= 1

Weak interactions:
superfluidity

Strong interactions:

Mott insulator which

preserves all lattice
symmetries

M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and 1. Bloch, Nature 415, 39 (2002).



Approaching the transition from the insulator (f=1)

Excitations of the insulator:

O © ©)
Particles ~ '

o e o

Holes ~

Density of particles = density of holes =
“relativistic” field theory for :

S
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Insulator < (¥) =0
Superfluid < (¥) #0



Approaching the transition from the superfluid (f=1)
Excitations of the superfluid: (A) Superflow (“spin waves™)

With ¢ ~ e, the action for fluctuations of the superfluid velocity ~ V6

18

B % d32(0,0)°

Dual form: After a Hubbard-Stratonovich transformation, write

o
S.— / P [2,03 J? 4 zJpaﬂal

Integrating over 6 yields 0,,J, = 0. Solve, by writing
JP., — éwj)\ayA)\

leading to

S

st = /dBLE |:21 (6,114/)\81/14)\)2]

Phase (“spin wave”) fluctuations are dual to a U(1) gauge theory
in 2-+1 dimensions



Approaching the transition from the superfluid (f=1)
Excitations of the superfluid: (B) Vortices

vortex

A vortex is a point-like object. We can therefore define a

local field operator, ¢, which annihilates a vortex.



Approaching the transition from the superfluid (f=1)
Excitations of the superfluid: (B) Vortices

@ vortex

A vortex is a point-like object. We can therefore define a

—

E

local field operator, ¢, which annihilates a vortex.
Each vortex is the source of an ‘electric field’ E associated

with the U(1) gauge field A,,.
Consequently, ¢ carries +1 U(1) gauge charge.



Approaching the transition from the superfluid (f=1)
Excitations of the superfluid: Superflow and vortices

@: vortex annihilation operator.
€0y Ay: boson current ~ ¢*0,1 — 10,9* .

Density of vortices = density of antivortices =
“relativistic” field theory for ¢:

Sival = /d?’-fc [I(é’u —iA,)el* + §lel? + §|<p|4
1 2
T Q—P,s(euy/\ayA/\) }

Superfluid < (p) =0
Insulator < (p) # 0



Dual theories of the superfluid-insulator transition (f=1)

Using the boson quasiparticle excitations, ~ 1, of the insu-
lator

S = [ drar[l0wf + 1V,oP + sl + Gl
Insulator < () =0
Superfluid & (¢) #0

1s dual to

Using the vortex quasiparticle, ~ ¢, and superfluid velocity,
~ €,,)0,A), excitations of the superfluid

Siual = /d% [I(@L —iA,)pl” + 3le* + §\<pl4
1
25
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Superfluid < (p) =0
Insulator < (p) #0
C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981);



A vortex In the vortex field is the original boson

A vortex in ¢ carries 27 flux in the ‘magnetic field’
B = €;,,0,A,. But this is just the original boson number op-
erator. Consequently, in the path integral viewpoint, the world
line of the vortex in ¢ is just the world line of the original boson.



A vortex In the vortex field is the original boson

A vortex in ¢ carries 27 flux in the ‘magnetic field’
B = €;,,0,A,. But this is just the original boson number op-
erator. Consequently, in the path integral viewpoint, the world
line of the vortex in ¢ is just the world line of the original boson.

/“ Current of @ H

The wavefunction of a vortex acquires a phase of
27 each time the vortex encircles a boson



osons at density f = 1/2 (equivalent to S=1/2 AFMs)

F

“ Weak interactions: superfluidity “ (w)#0

Strong interactions: Candidate insulating states H
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All insulating phases have density-wave order p(r)=Y_ p,e'%" with < pQ> #0
Q

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, 134510 (2001)
S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)



Predictions of LGW theory

First order

<W> transition <,0Q>
Superconductor Charge-ordered insulator
> I — 1,

Coexistence

<W > (Supersolid) /<,0Q >

Superconductor Charge-ordered insulator
] > I
<W> "Disordered "
( # topologically ordered) P Q >

Charge-ordered
Insulater
1nsu>atiel) - r2

Superconductor \_ |(¥,)=0, < pQ> =0




Predictions of LGW theory

First order

<W> transition <,0Q>
Superconductor Charge-ordered insulator
> I — 1,

Coexistence

<W > (Supersolid) /<,0Q >

Superconductor Charge-ordered insulator
‘ > I =1

"Disordered "

<W 11y Lq >
Superconductg T_)=0 < > —0 Chage—ordered

N 5

kg
1




Boson-vortex duality

/“ Current of ¢ H

vortex

The wavefunction of a vortex acquires a phase of
27 each time the vortex encircles a boson

Strength of “magnetic” field on vortex field ¢
= density of bosons = f flux quanta per plaquette

C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981); D.R. Nelson, Phys. Rev. Lett. 60,
1973 (1988); M.P.A. Fisher and D.-H. Lee, Phys. Rev. B 39, 2756 (1989);



Boson-vortex duality

Quantum mechanics of the vortex “particle” @ 1s
invariant under the square lattice space group:

T , T, : Translations by a lattice spacing in the X, y directions

X2 "y

R : Rotation by 90 degrees.

Magnetic space group:
2 7rif .
LT, =TT ;
R_lTyR =T, ; R'TR :Ty‘1 . R* =1

Strength of “magnetic” field on vortex field ¢
= density of bosons = f flux quanta per plaquette



Boson-vortex duality
Hofstadter spectrum of the quantum vortex “particle” ¢

et
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At density f=p/q (p, q relatively
prime integers) there are ( species

of vortices, ¢, (with /=1...Q),

associated with g gauge-equivalent
regions of the Brillouin zone
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Magnetic space group:
T.T, =TT,

b

R'TR=T, ; R'TR=T"; R'=1




Boson-vortex duality
Hofstadter spectrum of the quantum vortex “particle” ¢
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The q vortices form a projective representation of the space group

T:o—->0., ; Ty Py = e Dy

See also X.-G. Wen, Phys. Rev. B 65, 165113 (2002)



Boson-vortex duality

The q ¢, vortices characterize both
superconducting and density wave orders

Superconductor /insulator : <g0£> =0 / <go€> # 0




Boson-vortex duality

The q ¢, vortices characterize both

superconducting and density wave orders

Density wave order:

Status of space group symmetry determined by

: 27
density operators p, at wavevectors Q= —p(m, n)




Field theory with projective symmetry

Degrees of freedom:

q complex ¢, vortex fields

1 non-compact U(1) gauge field A,

S = /d%drr{Z{l A odl* + 8|}

1

e 262 (Epw,\a A)\ SE Z f)/mn(pﬁ(pzrm(pf—}-n%pf—{—m—n

mn

The projective symmetries constrain the couplings +,,, to obey

Tmn — Y—m,—n 3 Tmn = Tmm-n 3 Tmn = Tm—-2n,—n

1 —2mif|n(m—n)+n(m—n



Field theory with projective symmetry
Fluctuation-induced,

weak, first order transition < Lo >
Charge-ordered insulator

0 0
<§0€>¢ 9</Omn>>¢r.1 . r2

(P
Superconductor

<¢€>=O,<pmn>20




Field theory with projective symmetry
Fluctuation-induced,

<\Psc > weak, first order transition < Lo >
Superconductor Charge-ordered insulator
= O . mn — O O 9 mn O
(@,)=0.{ppm) <%%ﬁ<p>fn_5
Supersolid
o) = | (9)=0.(pm) 20 ()
Superconductor Charge-ordered insulator
(#)=0,(pp,) =0 (9,)#0,{py,) # 0

> —T,




Field theory with projective symmetry
Fluctuation-induced,

<\Psc> weak, first order transition
Pq
Superconductor Charge-ordered insulator
=0,{p.,)=0 0,({p,,)#0
(@,)=0.{ppm) (9,)#0.(p >fr1—r2
Supersolid
o) = | (9)=0.(pm) 20 ()
Superconductor Charge-ordered insulator
— O 2 mn — O 2 mn O
<¢e> <,0 > <%>¢O <,0 >>¢r1—r2
<\P > Second order transition < >
sC —\P Q
Superconductor Charge-ordered insulator
(¢:)=0,{pm) =0 ()% 0-(Pm) # 9

> rl—rz




Field theory with projective symmetry

Spatial structure of insulators for =2 (f=1/2)

O O o i
a»- L @—++—0

All insulating phases have density-wave order p(r)=)_ p,e'®" with < pQ> #0
Q




Field theory with projective symmetry
~ Spatial structure of insulators for q=4 (f=1/4 or 3/4)
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Field theory with projective symmetry

Density operators p,, at wavevectors Q,,, =——(m,n)

9
__ Alzmnf * 2 rifmf
pmn =€ qufqpmne
/=1

Each pinned vortex in the superfluid has a halo of density wave

order over a length scale = the zero-point quantum motion of the
vortex. This scale diverges upon approaching the insulator




Vortex-induced LDOS of Bi,Sr,CaCu,0Og, integrated
from 1meV to 12meV at 4K

Vortices have
halos with
LDOS

modulations at a
period = 4 lattice
spacings

J. Hoffman E. W. Hudson, K. M. Lang,
V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, Prediction of VBS order near

and J. C. Davis, Science 295, 466 (2002). vortices: K. Park and S. Sachdev,
Phys. Rev. B 64, 184510 (2001).



B. Extension to electronic models for the
cuprate superconductors

Dual vortex theories of the doped
(1) Quantum dimer model
(2)“Staggered flux’ spin liquid
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(B.1) Phase diagram of doped antiferromagnets
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@ = parameter controlling strength of quantum

fluctuations in a semiclassical theory of the
destruction of Neel order



(B.1) Phase diagram of doped antiferromagnets
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N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).



(B.1) Phase diagram of doped antiferromagnets
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(B.1) Doped quantum dimer model I

o =321 DN 1)
(" DO 1)

Density of holes = o

E. Fradkin and S. A. Kivelson, Mod. Phys. Lett. B 4, 225 (1990).



(B.1) Duality mapping of doped quantum dimer model shows:

Vortices 1n the superconducting state obey the
magnetic translation algebra

where 0,, 1s the density of holes in the proximate
Mott insulator (for 6,, =1/8,f =7/16 = =16)

Note: f = density of Cooper pairs

Most results of Part A on bosons can be applied
unchanged with g as determined above




(B.1) Phase diagram of doped antiferromagnets
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(B.1) Phase diagram of doped antiferromagnets
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(B.1) Phase diagram of doped antiferromagnets
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(B.1) Phase diagram of doped antiferromagnets
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(B.2) Dual vortex theory of doped “staggered flux” spin liquid

We consider a d-wave superconductor described as a doped
“staggered flux” spin liquid in the SU(2) gauge theory formu-
lation. We wish to describe quantum fluctuations in such a
superconductor near a transition to a Mott insulator. The
Mott insulator has hole density d,;;, with

Omr _ P
2 q’

with p, ¢ relatively prime integers.

The dual theory shows that there are a pair of ¢ complex
vortex fields ¢y and 9y, which are dual to the two species of
bosons, by, by of the SU(2) gauge theory. These are coupled to
2 non-compact U(1) gauge fields: A, (whose flux represents
the superflow), and B, (whose Chern-Simons dual is coupled
to the nodal fermions).



(B.2) Dual vortex theory of doped “staggered flux” spin liquid

The effective action for the theory is:

sz = S, +84

g—1
0 _ .
Sy = ]derd'r Z [hs(—l)e {‘PT,£+q/2 (a — 1A, — ZBT) P10
=0

" < :
_992,54—9‘/2 (E = ZAT 5 ZBT> QOQQ}

-+ |(6’2 — ZAZ — ’iBi)QO15|2 -+ S|(,01g|2

-+ |(83 g ZAZ + ?:Bi)g02£|2 -+ S|(,Ogg|2]

&k [ k2 kK,
Sa = / = [QBQA#(—k)Ay(k) (5W— zg>

gm(—k}By(m (dm, - kz]j)]

There are also additional “monopole” terms which are not
shown.

+




(B.2) Dual vortex theory of doped “staggered flux” spin liquid

Main (preliminary) results:

e Formation of vortex-anti-vortex bound states implies
transitions occurs first into a supersolid.

e Density wave order in the supersolid is enhanced by the
“staggered flux” at wavevectors

2
Qn = ﬁ(man)a with m +n odd

q



II.

[I.

IV.

Conclusions

Superfluids near commensurate insulators with “boson’ density
p/q have q species of vortices. The projective transformations
of these vortices under the lattice space group defines a
“quantum order” which distinguishes superfluids from each
other. (Note: only the density of the insulator, and not the
superfluid, is exactly p/Q).

Vortices carry the quantum numbers of both superconductivity
and the square lattice space group (in a projective
representation).

Vortices carry halo of density wave order, and pinning of
vortices/anti-vortices leads to a unified theory of STM
modulations in zero and finite magnetic fields.

Field theory of vortices with projective symmetries describes
superfluids with precursor fluctuations of density wave order
and 1ts transitions to supersolids and insulators.




