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Conventional quantum matter:

1. Ground states connected adiabatically to
independent electron states

2. Boltzmann-Landau theory of quasiparticles



Topological quantum matter:

1. Ground states disconnected from independent
electron states: many-particle entanglement

2. Boltzmann-Landau theory of quasiparticles

The fractional quantum Hall effect: the ground state is 
described by Laughlin’s wavefunction, and the 
excitations are quasiparticles which carry fractional 
charge.



Such metals are found, most prominently, near optimal 
doping in the the cuprate high temperature superconductors.

But how can we be sure that no quasiparticles exist in a 
given system? Perhaps there are some entangled 

quasiparticles inaccessible to current experiments……..

Quantum matter without quasiparticles:

1. Ground states disconnected from independent
electron states: many-particle entanglement

2. Quasiparticle structure of excited states2. No quasiparticles

Strange metals:
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Such metals are found, most prominently, near optimal 
doping in the the cuprate high temperature superconductors.
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given system? Perhaps there are some exotic quasiparticles 

inaccessible to current experiments……..



K. Damle and S. Sachdev, PRB 56, 8714 (1997)                 
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Local thermal equilibration or

phase coherence time, ⌧':

• There is an lower bound on ⌧' in all many-body quantum

systems of order ~/(kBT ),

⌧' > C
~

kBT
,

and the lower bound is realized by systems

without quasiparticles.

• In systems with quasiparticles, ⌧' is parametrically larger

at low T ;
e.g. in Fermi liquids ⌧' ⇠ 1/T 2

,

and in gapped insulators ⌧' ⇠ e�/(kBT )
where � is the

energy gap.



A. I. Larkin and Y. N. Ovchinnikov, JETP 28, 6 (1969)

J. Maldacena, S. H. Shenker and D. Stanford, arXiv:1503.01409 

A bound on quantum chaos:

• The time over which a many-body quantum

system becomes “chaotic” is given by ⌧L =

1/�L, where �L is the “Lyapunov exponent”

determining memory of initial conditions. This

Lyapunov time obeys the rigorous lower bound

⌧L � 1

2⇡

~
kBT



Quantum matter without quasiparticles

⇡ fastest possible many-body quantum chaos
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• Black holes have a “ring-down” time, ⌧r, in which they radiate

energy, and stabilize to a ‘featureless’ spherical object. This time

can be computed in Einstein’s general relativity theory.

• For this black hole ⌧r = 7.7 milliseconds. (Radius of black hole

= 183 km; Mass of black hole = 62 solar masses.)
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September 14, 2015

• ‘Featureless’ black holes have a Bekenstein-Hawking
entropy, and a Hawking temperature, TH .



LIGO
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• Expressed in terms of the Hawking temperature,
the ring-down time is ⌧r ⇠ ~/(kBTH) !

• For this black hole TH ⇡ 1 nK.



Figure credit: L. Balents
The Sachdev-Ye-Kitaev

(SYK) model:

• A theory of a

strange metal

• Dual theory of

gravity on AdS2

• Fastest possible

quantum chaos

with ⌧L =

~
2⇡kBT
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The Sachdev-Ye-Kitaev

(SYK) model:

• A theory of a

strange metal

• Dual theory of

gravity on AdS2

• Fastest possible

quantum chaos

with ⌧L =

~
2⇡kBT

A. Kitaev, unpublished
J. Maldacena and D. Stanford, arXiv:1604.07818
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A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)

S. Sachdev and J. Ye, PRL 70, 3339 (1993)

Jij;k` are independent random variables with Jij;k` = 0 and |Jij;k`|2 = J2

N ! 1 yields critical strange metal.

SYK model



S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

Feynman graph expansion in Jij.., and graph-by-graph average,

yields exact equations in the large N limit:

G(i!) =
1

i! + µ� ⌃(i!)
, ⌃(⌧) = �J2G2

(⌧)G(�⌧)

G(⌧ = 0

�
) = Q.

Low frequency analysis shows that the solutions must be gapless

and obey

⌃(z) = µ� 1

A

p
z + . . . , G(z) =

Ap
z

for some complex A. The ground state is a non-Fermi liquid, with

a continuously variable density Q.

⌃ =

SYK model
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• T = 0 Green’s function G ⇠
⇢

�1/
p
⌧ for ⌧ > 0

e�2⇡E/
p
⌧ for ⌧ < 0

• T > 0 Green’s function has conformal invariance
G ⇠ e�2⇡ET⌧/(sin(⇡T ⌧))1/2

• Non-zero GPS entropy as T ! 0, S(T ! 0) = NS0 + . . .

• SYK models are “are states of matter at non-zero density
realizing the near-horizon, AdS2⇥R2 physics of Reissner-
Nördstrom black holes”. The Bekenstein-Hawking en-
tropy is NS0 (GPS = BH).

• E is identified with the electric field on AdS2. The re-
lationship (@S/@Q)T = 2⇡E is obeyed both by the GPS
entropy, and by the BH entropy of AdS2 horizons in a
large class of gravity theories.

SYK model
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SYK and AdS2



Einstein-Maxwell theory

+ cosmological constant

GPS 
entropy

⇣
~x

⇣ = 1

charge
density Q

T 2

AdS2 ⇥ T

2

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

BH 
entropy

Mapping to SYK applies when temperature ⌧ 1/(size of T 2
)

SYK and AdS2



SYK and AdS2
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SYK and AdS2

G(i!) =
1

i! + µ� ⌃(i!)
, ⌃(⌧) = �J2G2(⌧)G(�⌧)

⌃(z) = µ� 1

A

p
z + . . . , G(z) =

Ap
z

At frequencies ⌧ J , the i! + µ can be dropped,

and without it equations are invariant under the

reparametrization and gauge transformations

⌧ = f(�)

G(⌧1, ⌧2) = [f 0
(�1)f

0
(�2)]

�1/4 g(�1)

g(�2)
G(�1,�2)

⌃(⌧1, ⌧2) = [f 0
(�1)f

0
(�2)]

�3/4 g(�1)

g(�2)
⌃(�1,�2)

where f(�) and g(�) are arbitrary functions.

A. Kitaev, unpublished
S. Sachdev, PRX 5, 041025 (2015)
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Let us write the large N saddle point solutions of S as

Gs(⌧1 � ⌧2) ⇠ (⌧1 � ⌧2)
�1/2 , ⌃s(⌧1 � ⌧2) ⇠ (⌧1 � ⌧2)

�3/2.

These are not invariant under the reparametrization symmetry but are in-

variant only under a SL(2,R) subgroup under which

f(⌧) =
a⌧ + b

c⌧ + d
, ad� bc = 1.

So the (approximate) reparametrization symmetry is spontaneously broken.

Reparametrization zero mode

Expand about the saddle point by writing

G(⌧1, ⌧2) = [f 0
(⌧1)f

0
(⌧2)]

1/4Gs(f(⌧1)� f(⌧2))

(and similarly for ⌃) and obtain an e↵ective action for f(⌧). This action

must vanish for f(⌧) 2 SL(2,R).

A. Kitaev, unpublished

SYK and AdS2
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Connections of SYK to gravity and AdS2

horizons

• Reparameterization and gauge

invariance are the ‘symmetries’ of

the Einstein-Maxwell theory of

gravity and electromagnetism

• SL(2,R) is the isometry group of AdS2.

A. Kitaev, unpublished

SYK and AdS2



J. Maldacena and D. Stanford, arXiv:1604.07818
See also  A. Kitaev, unpublished, and  J. Polchinski and  V. Rosenhaus, arXiv:1601.06768
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J. Maldacena and D. Stanford, arXiv:1604.07818; R. Davison, Wenbo Fu, Yingfei Gu, S. Sachdev, unpublished; 
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K. Jensen, arXiv:1605.06098; J. Engelsoy, T.G. Mertens, and H. Verlinde, arXiv:1606.03438

With g(⌧) = e�i�(⌧)
, the action for �(⌧) and f(⌧) =

1

⇡T
tan(⇡T (⌧ + ✏(⌧))

fluctuations is

S�,f =

K

2

Z 1/T

0
d⌧(@⌧�+ i(2⇡ET )@⌧ ✏)2 �

�

4⇡2

Z 1/T

0
d⌧ {f, ⌧},

where {f, ⌧} is the Schwarzian:

{f, ⌧} ⌘ f 000

f 0 � 3

2

✓
f 00

f 0

◆2

.

The couplings are given by thermodynamics: ⌦ is the grand potential,

S0 is the GPS entropy, and Q is the density.

K = �
✓
@2

⌦

@µ2

◆

T

, � + 4⇡2E2K = �
✓
@2

⌦

@T 2

◆

µ

2⇡E =

@S0

@Q

In holography: the � term in the action has been obtained from theories

on AdS2; E is the electric field, and has the same relationship to S0.

SYK and AdS2



R. Davison, Wenbo Fu, Yingfei Gu, S. Sachdev, unpublished

The correlators of the density fluctuations, �Q(⌧), and the energy fluctua-

tions �E � µ�Q(⌧) are time independent and given by

✓
h�Q(⌧)�Q(0)i h(�E(⌧)� µ�Q(⌧))�Q(0)i /T

h(�E(⌧)� µ�Q(⌧))�Q(0)i h(�E(⌧)� µ�Q(⌧))(�E(0)� µ�Q(0))i /T

◆
= T�s

where �s is the static susceptibility matrix given by

�s ⌘
✓

�(@2
⌦/@µ2

)T �@2
⌦/(@T@µ)

�T@2
⌦/(@T@µ) �T (@2

⌦/@T 2
)µ

◆
.
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SYK and AdS2



One can also derive the thermodynamic properties from the large-N saddle point free

energy:

F

N
=

1

�


� log Pf (@⌧ � ⌃) +

1

2

Z
d⌧

1

d⌧
2

✓
⌃(⌧

1

, ⌧
2

)G(⌧
1

, ⌧
2

)� J2

4
G(⌧

1

, ⌧
2

)4
◆�

(8)

= U � S
0

T � �

2
T 2 + . . . (9)

In the second line we write the free energy in a low temperature expansion,3 where U ⇡
�0.0406J is the ground state energy, S

0

⇡ 0.232 is the zero temperature entropy [32, 4],

and �T = cv = ⇡↵
K

16

p
2�J

⇡ 0.396
�J

is the specific heat [11]. The entropy term can be derived

by inserting the conformal saddle point solution (2) in the e↵ective action. The specific

heat can be derived from knowledge of the leading (in 1/�J) correction to the conformal

saddle, but the energy requires the exact (numerical) finite �J solution.

3 The generalized SYK model

In this section, we will present a simple way to generalize the SYK model to higher di-

mensions while keeping the solvable properties of the model in the large-N limit. For

concreteness of the presentation, in this section we focus on a (1 + 1)-dimensional ex-

ample, which describes a one-dimensional array of SYK models with coupling between

neighboring sites. It should be clear how to generalize, and we will discuss more details of

the generalization to arbitrary dimensions and generic graphs in section 6.

3.1 Definition of the chain model

k

j

J 0
jklm

m

l
k l

j m

Jjklm

Figure 1: A chain of coupled SYK sites: each site contains N � 1 fermion with SYK
interaction. The coupling between nearest neighbor sites are four fermion interaction with
two from each site.

3Starting at T 3.77, this expansion is expected to also involve non-integer powers given by the dimensions
of irrelevant operators in the model.

6

Coupled SYK models

Yingfei Gu, Xiao-Liang Qi, and D. Stanford, arXiv:1609.07832



Coupled SYK models
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i!(�i! +Dk2)�1

+ 1

⇤
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where the di↵usivities are related to the thermoelectric conductivities by

the Einstein relations
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✓
� ↵
↵T 

◆
��1
s .
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R. Davison, Wenbo Fu, Yingfei Gu, S. Sachdev, unpublished
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The coupled SYK models realize a 
diffusive metal with no quasiparticle 

excitations.
(a “strange metal”)

Coupled SYK models

R. Davison, Wenbo Fu, Yingfei Gu, S. Sachdev, unpublished

↵ = �
@S0

@Q



Holography:Einstein-Maxwell-axion theory

⇣
~x

⇣ = 1

charge
density Q

R2

AdS2 ⇥R

2

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

S =

Z
d

4
x

p
�ĝ

 
R̂+ 6/L2 � 1

2

2X

i=1

(@'̂i)
2 � 1

4
F̂µ⌫ F̂

µ⌫

!
,

Y. Bardoux, M. M. Caldarelli, and C. Charmousis, JHEP 05 (2012) 054; D. Vegh, arXiv:1301.0537;  
R. A. Davison, PRD 88 (2013) 086003; M. Blake and D. Tong,  PRD  88 (2013), 106004;  

T. Andrade and B. Withers,  JHEP 05 (2014) 101; M. Blake, PRL 117, 091601 (2016);                                                           
R. Davison, Wenbo Fu, Yingfei Gu, S. Sachdev, unpublished

• For '̂i = 0, we obtain the Reissner-Nördstrom-AdS charged black

hole, with a near-horizon AdS2 ⇥R

2
near-horizon geometry.

• For '̂i = kxi, we obtain a similar solution but with momentum dissi-

pation (a bulk massive graviton). This yields the same di↵usive metal

correlators as the coupled SYK models, and the same relationship be-

tween ↵ and �.



Entangled quantum matter without quasiparticles

• Is there a connection between

strange metals and black holes?

Yes, e.g. the SYK model.

• Why do they have the same

equilibration time ⇠ ~/(kBT )?
Strange metals don’t have

quasiparticles and thermalize rapidly;

Black holes are “fast scramblers”.

• Theoretical predictions for strange metal

transport in graphene agree well with experiments


