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Conventional quantum matter:

|. Ground states connected adiabatically to
independent electron states

2. Boltzmann-Landau theory of quasiparticles




Topological quantum matter:

|. Ground states disconnected from independent

electron states: many-particle entanglement

2. Boltzmann-Landau theory of quasiparticles

The fractional quantum Hall effect: the ground state is
described by Laughlin’s wavefunction, and the

excitations are quasiparticles which carry fractional
charge.



Quantum matter without quasiparticles:

|. Ground states disconnected from independent
electron states: many-particle entanglement

2. No quasiparticles

Strange metals:

Such metals are found, most prominently, near optimal
doping in the the cuprate high temperature superconductors.



Quantum matter without quasiparticles:

|. Ground states disconnected from independent
electron states: many-particle entanglement

2. No quasiparticles

Strange metals:

Such metals are found, most prominently, near optimal
doping in the the cuprate high temperature superconductors.

But how can we be sure that no quasiparticles exist in a
given system! Perhaps there are some exotic quasiparticles
inaccessible to current experiments........



Local thermal equilibration or
phase coherence time, 7,:

e There is an lower bound on 7, in all many-body quantum
systems of order A/(kgT),

n
C_
o= YL oT

and the lower bound is realized by systems
without quasiparticles.

e In systems with quasiparticles, 7, is parametrically larger
at low 17
e.g. in Fermi liquids 7, ~ 1/T°%,
and 1n gapped insulators 7, ~ e/ (kBT) where A is the

energy gap.

K. Damle and S. Sachdev, PRB 56,8714 (1997)
S. Sachdev, Quantum Phase Transitions, Cambridge (1999)



A bound on quantum chaos:

e The time over which a many-body quantum
system becomes “chaotic” is given by 77 =
1/Ar, where Az, is the “Lyapunov exponent”
determining memory of initial conditions. This
LYAPUNOV TIME obeys the rigorous lower bound

>1 h
-
L_QWkBT

A.l. Larkin and Y. N. Ovchinnikov, |ETP 28, 6 (1969)
J. Maldacena, S. H. Shenker and D. Stanford, arXiv:1503.01409



A bound on quantum chaos:

e The time over which a many-body quantum
system becomes “chaotic” is given by 77 =
1/Ar, where Az, is the “Lyapunov exponent”
determining memory of initial conditions. This
LYAPUNOV TIME obeys the rigorous lower bound

>1 h
-
L_QWkBT

Quantum matter without quasiparticles
~ fastest possible many-body quantum chaos
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S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido,
H. Ikeda, H.Takeya, K. Hirata, T. Terashima, and Y. Matsuda,

Physical Review B 81, 184519 (2010)
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J. A. N. Bruin, H. Sakai, R. S. Perry, A. P. Mackenzie, Science. 339, 804 (2013)
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e Black holes have a “ring-down” time, 7,., in which they radiate
energy, and stabilize to a ‘featureless’ spherical object. This time
can be computed in Einstein’s general relativity theory.

e For this black hole 7,, = 7.7 milliseconds. (Radius of black hole
= 183 km; Mass of black hole = 62 solar masses.)
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e ‘Featureless’ black holes have a Bekenstein-Hawking
entropy, and a Hawking temperature, T}.
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e Lixpressed in terms of the Hawking temperature,
the ring-down time is 7. ~ h/(kgTy) !

e For this black hole Ty =~ 1 nK.
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oravity on AdSs




The SaCthV—Ye—KltaeV Figure credit: L. Balents
(SYK) model: =

e A theory of a
strange metal

e Dual theory of
oravity on AdSs

e Fastest possible
quantum chaos

h
27T]€BT

with 71 =

A. Kitaev, unpublished
J. Maldacena and D. Stanford, arXiv:1604.07818



SYK model

N

1

"= (2IV)3/2 Z Jijske Cjc}ckc@ B “Z C;'rci
i3,k =1 g

cic; +cijc; =0 | cicj- — c;.ci = 04

O = %chcz

o !

J156,11 ce

J8.9.12.14
® 14

Jij.ke are independent random variables with J;;..¢ = 0 and |J;;.x¢]? = J?

N — oo yields critical strange metal.
S.Sachdev and J.Ye, PRL 70, 3339 (1993)

A. Kitaey, unpublished; S. Sachdev, PRX 5, 041025 (2015)



SYK model

Feynman graph expansion in J;; , and graph-by-graph average,
yields exact equations in the large N limit:

S.Sachdev and |.Ye, Phys. Rev. Lett. 70, 3339 (1993)



SYK model

Feynman graph expansion in J;; , and graph-by-graph average,
yields exact equations in the large N limit:

Low frequency analysis shows that the solutions must be gapless
and obey

1 A

o) =p— Vit Gle)= -~

for some complex A. The ground state is a non-Fermi liquid, with
a continuously variable density O.

S.Sachdev and |.Ye, Phys. Rev. Lett. 70, 3339 (1993)



SYK model

[ —1//7 forT>0
e )T for T <0

S.Sachdev and ].Ye, Phys. Rev. Lett. 70, 3339 (1993)

e 7' = (0 Green’s function GG ~ <«




SYK model

[ —1//7 forT>0
e=27¢ [\ /T for T <0

e 7' = (0 Green’s function GG ~ <«

\

e 7' > 0 Green’s function has conformal invariance
G ~ e 27T [ (sin(nTT))/?
A. Georges and O. Parcollet PRB 59, 5341 (1999)



SYK model

[ —1//7 forT>0
e=27¢ [\ /T for T <0

e T'= (0 Green’s function G ~ <

\

e 7' > 0 Green’s function has conformal invariance
G ~ e 27T [ (sin(nTT))/?

e Non-zero GPS entropy as T — 0, S(T"— 0) = NSy + ...

A. Georges, O. Parcollet, and S. Sachdeyv, Phys. Rev. B 63, 134406 (2001)




SYK and AdS>

[ —1//7 forT>0
e=27¢ [\ /T for T <0

T = 0 Green’s function GG ~ <

\

T > 0 Green’s function has conformal invariance
G ~ e 2717 /(sin(nT'T))1/?

Non-zero GPS entropy as T"— 0, S(T'— 0) = NSy + ...

SY K models are “are states of matter at non-zero density
realizing the near-horizon, AdS, x R? physics of Reissner-
Nordstrom black holes”. The Bekenstein-Hawking en-

tropy is NSy (GPS = BH). S. Sachdev, PRL 105, 151602 (2010)

£ is identified with the electric field on AdSs. The re-
lationship (05/0Q), = 2n€ is obeyed both by the GPS
entropy, and by the BH entropy of AdSs horizons in a
large class of gravity theories. S. Sachdev, PRX 5,041025 (2015)



SYK and AdS>

BH

charge
density QO

AdSQ X T2
ds? = (d¢° — dt?)/¢? + dx”
Gauge field: A = (£/()dt

Einstein-Maxwell theory
+ cosmological constant

Mapping to SYK applies when temperature < 1/(size of T?)

GPS
entropy




SYK and AdS>

S.Sachdev and |.Ye, Phys. Rev. Lett. 70, 3339 (1993)



SYK and AdS>

At frequencies < J, the iw + u can be dropped,
and without it equations are invariant under the
reparametrization and gauge transformations

r = f(o)

7)) = [ (o) f(o0)] 9(01) 01,0
G( 1; 2) [f( 1)f( 2)] 9(0_2) G( 1; 2)
1, 72) = [ (01) f (09)] " 9(01) 01,0
Y11, 72) = [f(01) [ (02)] 2(0) X(01,02)

where f(o) and g(o) are arbitrary functions.

A. Kitaev, unpublished
S.Sachdeyv, PRX 5, 041025 (2015)



SYK and AdS>

Let us write the large N saddle point solutions of S as

—1/2

Gs(11 — T2) ~ (11 — T2) N (T = T) ~ (T — )2,

These are not invariant under the reparametrization symmetry but are in-
variant only under a SL(2,R) subgroup under which

b
f(T):aT+ , ad—bc=1.

ct + d

So the (approximate) reparametrization symmetry is spontaneously broken.

A. Kitaev, unpublished



SYK and AdS>

Let us write the large N saddle point solutions of .S as

anyes N N =\—=1/2 AN N Y

_\—3/2

onnections of SYK to gravity and Adsgx .

val horizons

So

e Reparameterization and gauge

4L

she Einstein-Maxwell theory of
oravity and electromagnetism

invariance are the ‘symmetries’ of

KCI1.

k e SL(2,R) is the isometry group of Adsy

A. Kitaev, unpublished



SYK and AdS>

Let us write the large N saddle point solutions of .S as

—1/2

Gs(11 — T2) ~ (11 — T2) N (T = T) ~ (T — )2,

These are not invariant under the reparametrization symmetry but are in-
variant only under a SL(2,R) subgroup under which

b
f(T):aT+ , ad—bc=1.

ct + d

So the (approximate) reparametrization symmetry is spontaneously broken.

Reparametrization zero mode
Expand about the saddle point by writing

G(r1,72) = [f (1) [/ ()]G (f(11) — f(72))

(and similarly for ) and obtain an effective action for f(7). This action
must vanish for f(7) € SL(2,R).

J. Maldacena and D. Stanford, arXiv:1604.07818
See also A. Kitaey, unpublished, and ]. Polchinski and V. Rosenhaus, arXiv:1601.06768



SYK and AdS; 1
With g(7) = e %(7), the action for ¢(7) and f(7) = e tan(wT (1 + €(7))

fluctuations is

oo pUT o UT
Sp r = 5/0 dr(0-¢ + i(QWET)ﬁTe)Q — 4—7T2/0 dr{f, 71},

where {f,7} is the Schwarzian:

_f/// 3 f// 2
u=t (Y

The couplings are given by thermodynamics: ) is the grand potential,
So is the GPS entropy, and Q is the density.

0% 040
K= - (—) , v+ AT EK = — <—>
op? ) 1% )
0S50
2 = —
& 50

In holography: the v term in the action has been obtained from theories

on AdSs:; € is the electric field, and has the same relationship to Sp.

J. Maldacena and D. Stanford, arXiv:1604.07818; R. Davison,Wenbo Fu,Yingfei Gu, S. Sachdev, unpublished;
S.Sachdev, PRX 5, 041025 (2015); J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857;
K.Jensen, arXiv:1605.06098; |. Engelsoy, T.G. Mertens, and H.Verlinde, arXiv:1606.03438



SYK and AdS; 1
With g(7) = e %(7), the action for ¢(7) and f(7) = e tan(wT (1 + €(7))

fluctuations is

oo pUT o UT
Sp r = 5/0 dr(0-¢ + i(QWET)ﬁTe)Q — 4—7T2/0 dr{f, 71},

where {f,7} is the Schwarzian:

O3 (Y
=L Q(f,) |

The correlators of the density fluctuations, 6Q(7), and the energy fluctua-
tions 6 F — o Q(7) are time independent and given by

( (0Q(7)0Q(0)) (OE(T) = poQ(7))0Q(0)) /T ) ~ Ty
(OE(T) = p0Q(7))0Q(0))  {(0E(T) — 10 Q(7))(0£(0) — 10Q(0))) /T )

where 'y, is the static susceptibility matrix given by

B —(0°Q/op*)r  —0°Q/(0T0w)
Xs = ( —T0°Q/(0Tou) —T(0°Q/0T7), ) |

R. Davison,Wenbo Fu,Yingfei Gu, S. Sachdev, unpublished



Coupled SYK models
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Figure 1: A chain of coupled SYK sites: each site contains N > 1 fermion with SYK
interaction. The coupling between nearest neighbor sites are four fermion interaction with
two from each site.

Yingfei Gu, Xiao-Liang Qi, and D. Stanford, arXiv:1609.07832



SYK models

The correlators of the density fluctuations, 09(7), and the energy fluctua-
tions 0 — udQ(7) are time independent and given by

( (0Q(7)0Q(0)) (OE(T) = poQ(7))0Q(0)) /T ) _ Ty
(OE(T) = poQ(7))0Q(0))  ((0L(7) = poQ(7))(0E(0) — pnoQ(0))) /T )

where Y, 1s the static susceptibility matrix given by

_( —@Q/op*)r  ~0°Q/(9Top)
Xs = ( ~To?*Q/(0Tou) —T(9*Q/0T?),, )

Coupled SYK models

( (D5 Q) (E—pQ;9Q)., /T )
(£ — pQ; Q>k,w (B — pQ; E — MQ>k,w /T

where the diffusivities are related to the thermoelectric conductivities by

the Einstein relations
o o) (87 1
b= ( ol kK > Xs -

R. Davison,Wenbo Fu,Yingfei Gu, S. Sachdev, unpublished

= [iw(—iw + DE*) ™" 4+ 1] xs



Coupled SYK models

( < (D5 Dy (B = 1@ Qg /T ) = [iw(—iw + DE*) ™ 4+ 1] xs

B — pQ; Q>k,w (F—puQ; F — MQ>k,w /T

where the diffusivities are related to the thermoelectric conductivities by
the Einstein relations

The coupled SYK models realize a

diffusive metal with no quasiparticle
excitations.

(a “strange metal”)

R. Davison,Wenbo Fu,Yingfei Gu, S. Sachdev, unpublished



Holography:Einstein-Maxwell-axion theory

charge
density O

AdS2 X R2
ds? = (d¢? — dt?)/¢? + dx?
Gauge field: A = (£/()dt

8| ——————————> 3

A 1
_ 4 A 2 ~\2 _ v
S—/d x\/ —§ <R+6/L ~ 5 51(5%) 4FWF“ >7

e For ¢, = 0, we obtain the Reissner-Nordstrom-AdS charged black
hole, with a near-horizon AdS; x R? near-horizon geometry:.

e For v, = kx;, we obtain a similar solution but with momentum dissi-
pation (a bulk massive graviton). This yields the same diffusive metal
correlators as the coupled SYK models, and the same relationship be-

tween o and o.

Y. Bardoux, M. M. Caldarelli, and C. Charmousis, JHEP 05 (2012) 054; D.Vegh, arXiv:1301.0537;
R.A. Davison, PRD 88 (2013) 086003; M. Blake and D.Tong, PRD 88 (2013), 106004;
T.Andrade and B.Withers, JHEP 05 (2014) 101; M. Blake, PRL 117,091601 (2016);

R. Davison,Wenbo Fu,Yingfei Gu, S. Sachdev, unpublished



Entangled quantum matter without quasiparticles

e Is there a connection between

strange metals and black holes?
Yes, e.g. the SYK model.

e Why do they have the same
equilibration time ~ h/(kpT)?
Strange metals don’t have
quasiparticles and thermalize rapidly;
Black holes are “fast scramblers”.

e Theoretical predictions for strange metal
transport in graphene agree well with experiments



