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I. Magnetic quantum phase transitions in 
“dimerized” Mott insulators: 

Landau-Ginzburg-Wilson (LGW) theory:
Second-order phase transitions described by 

fluctuations of an order parameter
associated with a broken symmetry



TlCuCl3

M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, cond-mat/0309440.
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Coupled Dimer Antiferromagnet
M. P. Gelfand, R. R. P. Singh, and D. A. Huse, Phys. Rev. B 40, 10801-10809 (1989).
N. Katoh and M. Imada, J. Phys. Soc. Jpn. 63, 4529 (1994).
J. Tworzydlo, O. Y. Osman, C. N. A. van Duin, J. Zaanen, Phys. Rev. B 59, 115 (1999).
M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, 014407 (2002).
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TlCuCl3

N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, 
H.-U. Güdel, K. Krämer and   H. Mutka, Phys. Rev. 
B 63 172414 (2001).

S=1 
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particle 
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close to 1λ Weakly dimerized square lattice

Excitations:  
2 spin waves (magnons)

2 2 2 2
p x x y yc p c pε = +

Ground state has long-range spin density wave 
(Néel) order at wavevector K= (π,π) 

0 ϕ ≠
G

spin density wave order parameter:   ;  1 on two sublatticesi
i i

S
S
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TlCuCl3

J. Phys. Soc. Jpn 72, 1026 (2003)



λ 1 cλ

Néel state

T=0

Pressure in TlCuCl3

Quantum paramagnet

λc = 0.52337(3)
M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, 

Phys. Rev. B 65, 014407 (2002)

The method of bond operators (S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 
(1990)) provides a quantitative description of spin excitations in TlCuCl3 across the 
quantum phase transition (M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, 

Phys. Rev. Lett. 89, 077203 (2002))
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S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989) 
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For , oscillations of  about 0 
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A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B 49, 11919 (1994) 

S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989) 
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II. Magnetic quantum phase transitions of 
Mott insulators on the square lattice: 

A. Breakdown of LGW theory



Ground state has long-range Néel order 

Order parameter   
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Large scale Quantum Monte Carlo studies

A.W. Sandvik, cond-mat/0611343

A.W. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino, Phys. Rev. Lett.
89, 247201 (2002); A.W. Sandvik and R.G. Melko, cond-mat/0604451. 



Easy-plane model

Spin stiffness



Easy-plane model

Valence bond solid (VBS) order in expectation values of 
plaquette and exchange terms

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989) 



SU(2) invariant model

Strong evidence for a 
continuous “deconfined”
quantum critical point

T. Senthil, A. Vishwanath, L. Balents,    
S. Sachdev and M.P.A. Fisher,  Science 
303, 1490 (2004).

A.W. Sandvik, cond-mat/0611343
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SU(2) invariant model

Probability distribution 
of VBS order Ψ at 
quantum critical point

Emergent circular symmetry is 
a consequence of a gapless 
photon excition

T. Senthil, A. Vishwanath, L. Balents,    
S. Sachdev and M.P.A. Fisher,  Science 
303, 1490 (2004).

A.W. Sandvik, cond-mat/0611343
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LGW theory of multiple order parameters
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Distinct symmetries of order parameters permit 
couplings only between their energy densities



LGW theory of multiple order parameters
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II. Magnetic quantum phase transitions of 
Mott insulators on the square lattice: 

B. Berry phases
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has to be invariant under 2a aA Aμ μ π→ +
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Quantum theory for destruction of Neel order

S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)
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II. Magnetic quantum phase transitions of 
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C. Spinor formulation and deconfined
criticality
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N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990). 

K. Park and S. Sachdev, Phys. Rev. B 65, 220405 (2002). 
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Theory of a second-order quantum phase transition 
between Neel and VBS phases

*

At the quantum critical point:
 +2  periodicity can be ignored 

(Monopoles interfere destructively and are dangerously irrelevant).
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and of secondary importance
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Phase diagram of S=1/2 square lattice antiferromagnet
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Neel order
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