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|. Magnetic quantum phase transitions in
“dimerized” Mott insulators:

Landau-Ginzburg-Wilson (LGW) theory:

Second-order phase transitions described by
fluctuations of an order parameter
assoclated with a broken symmetry




TICuCl,

M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, cond-mat/0309440.



Coupled Dimer Antiferromagnet

M. P. Gelfand, R. R. P. Singh, and D. A. Huse, Phys. Rev. B 40, 10801-10809 (1989).
N. Katoh and M. Imada, J. Phys. Soc. Jpn. 63, 4529 (1994).

J. Tworzydlo, O. Y. Osman, C. N. A. van Duin, J. Zaanen, Phys. Rev. B 59, 115 (1999).
M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, 014407 (2002).
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Weakly coupled dimers
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TICuCl,
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N. Cavadini, G. Heigold, W. Henggeler, A. Furrer,
H.-U. Gudel, K. Kramer and H. Mutka, Phys. Rev.
B 63 172414 (2001).
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FIG. 1. Measured neutron profiles in the a*c* plane of TICuCl;

for i=(1.35.0,0), 7i=100,0,3.15) [rlu]. The spectrum at T=15K
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Weakly dimerized square lattice
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A closeto 1 Weakly dimerized square lattice

I\

1, i, i, i, i+ i Excitations:

- ofial . ¥ 2 spin waves (magnons)
. :"" . ;o . 5p:\/Cx2px2+Cy2py2
Ground state has long-range spin density wave <(5> + 0

(Neel) order at wavevector K= (,m)

- . _ S
spin density wave order parameter: ¢ = 7, ?I

, 1. =1 on two sublattices



TICuCl,

Neutron Diffraction Study of the Pressure-Induced Magnetic Ordering
in the Spin Gap System TICuCl;

Akira O0sAwA™, Masashi Fuiisawa!, Toyotaka OSAKABE, Kazuhisa KAKURAI and Hidekazu TANAKA?

Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195
'Department of Physics, Tokye Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551
*Research Center for Low Temperature Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551

(Received February 3, 2003)
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A, = 0.52337(3)
T:O M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama,
Phys. Rev. B 65, 014407 (2002)
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Néel state Quantum paramagnet
(@) #0 (¢)=0
‘—I—<_
A1 A, Pressure in TICuCl,

The method of bond operators (S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323

(1990)) provides a quantitative description of spin excitations in TICuCl, across the

quantum phase transition (M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist,
Phys. Rev. Lett. 89, 077203 (2002))



L GW theory for qguantum criticality

Landau-Ginzburg-Wilson theory: write down an effective action
for the antiferromagnetic order parameter ¢ by expanding in powers
of @ and its spatial and temporal derivatives, while preserving
all symmetries of the microscopic Hamiltonian

S, = Idzxde((VX@)z +¢(0.9) +(4 —ﬁ)¢2)+%(¢2)2}

S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989)
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Landau-Ginzburg-Wilson theory: write down an effective action
for the antiferromagnetic order parameter ¢ by expanding in powers
of @ and its spatial and temporal derivatives, while preserving
all symmetries of the microscopic Hamiltonian

S, = Idzxde((chﬁ)z +¢(0.9) +(4 —ﬁ)¢2)+%(¢2)2}

S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989)

For A < 4., oscillations of ¢ about ¢ =0
constitute the triplon excitation

A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B 49, 11919 (1994)
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I1. Magnetic quantum phase transitions of
Mott insulators on the square lattice:

A. Breakdown of LGW theory



Square lattice antiferromagnet

- — —

J.S.«S. ; S, = spin operator with S=1/2

Ground state has long-range Néel order

—_

Order parameter ¢ =17.S
n; = =1 on two sublattices

(@) #0
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Square lattice antiferromagnet

Z .S, = spin operator with S=1/2

(i)

Destroy Neel order by perturbations which preserve full square
lattice symmetry e.g. second-neighbor or ring exchange.

What is the state with (@) =0 ?



L GW theory for qguantum criticality

Landau-Ginzburg-Wilson theory: write down an effective action
for the antiferromagnetic order parameter ¢ by expanding in powers
of @ and its spatial and temporal derivatives, while preserving
all symmetries of the microscopic Hamiltonian

S¢ _ jdzxdf[%((vxqﬁ)z +¢° (87(5)2 + r¢2)+%(¢2)2}

The ground state for r > 0 has no broken symmetry
and a gapped S=1 quasiparticle excitation

(oscillations of ¢ about ¢ =0)
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Problem: there iIs no state with a gapped, stable
S=1 quasiparticle and no broken symmetries

A 2N A

Q

“Liquid” of valence bonds has
fractionalized S=1/2 excitations



‘ L_arge scale Quantum Monte Carlo studies \

Easy-plane model:

Hxy =2J Y (SFS7+5YSY) — K ) (SFS;555; + 57555, S

(i7) (ijkl)

A.W. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino, Phys. Rev. Lett.
89, 247201 (2002); A.W. Sandvik and R.G. Melko, cond-mat/0604451.

SU(2)-invariant model:

Have =J3S:-8;=Q 3 (88— 1) (Su-Si— 1)

(i7) (ijkl)

A.W. Sandvik, cond-mat/0611343



Easy-plane model
Hxy =2J Y (5757 +SYSY) — K Y (S8 SES + 57879, 9))
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Valence bond solid (VVBS) order in expectation values of

plaguette and exchange terms

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)
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SU(2) Invariant model

Hsue =7 > Si-S;—Q Y (Si-S;—1) (Se-Si—1)

(i7)

OO e

L=12

L=16,20,24

L=32

(i5kl)

Strong evidence for a
continuous “deconfined”
quantum critical point

T. Senthil, A. Vishwanath, L. Balents,
S. Sachdev and M.P.A. Fisher, Science
303, 1490 (2004).

A.W. Sandvik, cond-mat/0611343
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and has (¥, )# 0, where V', is the VBS order parameter
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Characterization of VBS state with (@) =0

Such a state breaks the symmetry of rotations by nz /2 about lattice sites,
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SU(2) Invariant model

Hsue =7 > Si-S;—Q Y (Si-S;—1) (Se-Si—1)
N (i7) (ijkl)
y

Probability distribution
of VBS order ¥ at
gquantum critical point

Emergent circular symmetry is
a conseguence of a gapless
photon excition

T. Senthil, A. Vishwanath, L. Balents,
S. Sachdev and M.P.A. Fisher, Science
303, 1490 (2004).

A.W. Sandvik, cond-mat/0611343



The VBS state does have a stable S=1 quasiparticle excitation
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The VBS state does have a stable S=1 quasiparticle excitation

<Lvas> =0, <§5> =0

(-\

D
)

'. ’I .\ .‘
- N
-

I\ I\ I\ /
\ . S

s\

(-’ ‘-)



L GW theory of multiple order parameters

[V |+ F, [2]+ F

vbs vbs

|:vbs :qjvbs] — vbs‘ +Uu ‘\Ijvbs‘4 T

:(/)[(5]25 Bl +U,|d| +
|:nt — V‘\vas‘z ‘@‘2 +

Distinct symmetries of order parameters permit
couplings only between their energy densities
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I1. Magnetic quantum phase transitions of
Mott insulators on the square lattice:

B. Berry phases
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Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the
sites of a cubic lattice of points a
Recall ¢, =21,S, - ¢,=(0,0,1) in classical Neel state;

n, — =1 on two square sublattices ;
A,, — half oriented area of spherical triangle

formed by ¢,, ¢,,,, and an arbitrary reference point ¢,

Do
2Aa,u _)2Aa,u_7/a+y+7/a 7/3 //7/a+,u
Change in choice of @, is like —
a “gauge transformation” P @
atu

The area of the triangle is uncertain modulo 4z, and the action
has to be invariantunder A, — A, +27




Quantum theory for destruction of Neel order

Ingredient missing from LGW theory:
Spin Berry Phases

exp(iza:naAafj

Sum of Berry phases of
all spins on the square
lattice.




Quantum theory for destruction of Neel order

Partition function on cubic lattice
o o l— . _
Z=[1[dg,0(: —1)exp(52¢a -cﬂaﬂJ
a a, u

LGW theory: weights in partition function are those of a
classical ferromagnet at a “temperature” g

Small g = ground state has Neel order with (@) 0

Large g = paramagnetic ground state with (¢) =0



Quantum theory for destruction of Neel order

Partition function on cubic lattice
. . 1 L .
Z=[1[dg,0(: —1)exp(62¢a Pa, +IZf7aAaT]
a a,u a

Modulus of weights in partition function: those of a
classical ferromagnet at a “temperature” g

Small g = ground state has Neel order with (@) =0

Large g = paramagnetic ground state with (¢) =0

Berry phases lead to large cancellations between different

time histories — need an effective action for A, at large g
S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)
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I1. Magnetic quantum phase transitions of
Mott insulators on the square lattice:

C. Spinor formulation and deconfined
criticality



Quantum theory for destruction of Neel order

Partition function on cubic lattice

z=T1]d@.5(¢ —1)e><p[%2¢3a P +iZnaAaT]
a a,u a

iD=
IPRRE@
l--lm)
HIN

Rewrite partition function in
terms of spinors z,,

with ¢ =T,4 and

(Ba — Zaa(_falg Zalg

S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)



Quantum theory for destruction of Neel order

Partition function on cubic lattice

L = Hfd¢a5(§5§ —1)e><p%2¢a Do+ iZUaAaT]
a a, u a

Rewrite partition function in
terms of spinorsz, ,

with ¢ =T,4 and

(Za = Laa 605,3 Zalg

|dentity from
spherical trigonometry

AMY| Zio Za i | = A

S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)



Quantum theory for destruction of Neel order

Partition function on cubic lattice

z=T1]d@.5(¢ —ﬂexp[éz@ P +iZnaAaT]
a a,u a

Partition function expressed as a gauge theory of spinor
degrees of freedom

Z ~ dezwdAaﬂ&(\zaa\z —1)

A,
X eXP ; Zzaae “Zosa +|Z¢7a
a,

S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)



Large g effective action for the A,  after integrating z,, ,

Z :gjdAaﬂ exp(z—iZECOS(AﬂA&/ —AvAaﬂ)—iZa:UaAafj

with e°~g?
This is compact QED in 3 spacetime dimensions with
static charges +1 on two sublattices.

This theory can be reliably analyzed by a duality mapping.

The gauge theory is in a confining phase, and there is VBS
order In the ground state. (Proliferation of monopoles in
the presence of Berry phases).

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990).
K. Park and S. Sachdev, Phys. Rev. B 65, 220405 (2002).
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Ordering by quantum fluctuations

D

) N~ N’ N\

‘ N o N \

|
|

’
D

.
-
~

"' ‘.|
_~ ol -

'.-
4 Al

(
|



Ordering by quantum fluctuations




Ordering by quantum fluctuations

D

) N~ N’ N\

‘ N o N \

|
|

’
D

.
-
~

"' ‘.|
_~ ol -

'.-
4 Al

(
|



Ordering by quantum fluctuations




Ordering by quantum fluctuations

D

) N~ N’ N\

‘ N o N \

|
|

’
D

.
-
~

"' ‘.|
_~ ol -

'.-
4 Al

(
|



Ordering by quantum fluctuations




Ordering by quantum fluctuations

D

) N~ N’ N\

‘ N o N \

|
|

’
D

.
-
~

"' ‘.|
_~ ol -

'.-
4 Al

(
|



Ordering by quantum fluctuations




Ordering by quantum fluctuations

D

) N~ N’ N\

‘ N o N \

|
|

’
D

.
-
~

"' ‘.|
_~ ol -

'.-
4 Al

(
|



Neel order

(@) #0

VBS order

< vbs> a O
Not present in

LGW theory
of ¢ order




Theory of a second-order quantum phase transition
between Neel and VBS phases

At the guantum critical point:
e A, — A, +27 periodicity can be ignored
(Monopoles interfere destructively and are dangerously irrelevant).
e S=1/2 spinons z_, with ¢ ~ 2.5 .»Z;, are globally
propagating degrees of freedom.

Second-order critical point described by emergent
fractionalized degrees of freedom (A, and z,, );

Order parameters (¢ and %, ) are “composnes”
and of secondary importance

S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990); G. Murthy and S. Sachdev,
Nuclear Physics B 344, 557 (1990); C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63,
134510 (2001); S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002);
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Phase diagram of S=1/2 square lattice antiferromagnet
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Second-order critical point described by
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at its critical point r = r., where A, is non-compact
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Aharanov-Bohm or Berry phases lead to surprising kine-
matic duality relations between seemingly distinct or-

ders. These phase factors allow for continuous quantum
phase transitions in situations where such transitions
are forbidden by Landau-Ginzburg-Wilson theory.




