

Hole-doped cuprates are BCS superconductors with $\langle c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger} \rangle \equiv \Delta_{k} = \Delta_{0} \left(\cos k_{x} - \cos k_{y} \right) d$ -wave pairing $\langle \vec{S} \rangle = 0$ spin-singlet

Low energy excitations:

Superflow: $\Delta_0 \rightarrow \Delta_0 e^{i\theta}$

S = 1/2 fermionic quasiparticles: $E_k = \sqrt{\varepsilon_k^2 + \Delta_k^2}$

BCS theory also predicts that the Fermi surface, with gapless quasiparticles, will reveal itself when $\Delta_0 \rightarrow 0$, either locally or globally at low temperatures. Δ_0 can be suppressed by a strong magnetic field, and near vortices, impurities and interfaces.

Superconductivity in a doped Mott insulator

<u>*Hypothesis*</u>: cuprate superconductors have low energy excitations associated with additional order parameters

- The new order parameters can
- have long range order co-existing with superconductivity
- appear with long-range correlations when Δ_0 is suppressed globally
- appear with short-range correlations when Δ_0 is suppressed locally
- characterize states which are "nearby" in parameter space, which could be either insulators or superconductors

Candidates

I. Broken time-reversal symmetry

See also M. Covington, M. Aprili, E. Paraoanu, L. H. Greene, F. Xu, J. Zhu, and C. A. Mirkin *Phys. Rev. Lett.* **79**, 277 (1997)

Photoemission measurements of A. Kaminski, S. Rosenkranz, H. M. Fretwel, J. C. Campuzano, Z. Li, H. Raffy, W. G. Cullen, H. You, C. G. Olson, C. M. Varma, and H. Ho, *Nature* **416**, 610 (2002).

Breaking of time-reversal symmetry or parity?

II. Staggered-flux state

Broken time-reversal symmetry +

translational symmetry breaking at momentum (π,π)

Evidence in some neutron scattering observations of YBCO by H. A. Mook, Pengcheng Dai, and F. Dogan, Phys. Rev. B **64**, 012502 (2001), but not confirmed by higher precision studies of C. Stock , W.J.L. Buyers , Z. Tun , R. Liang , D. Peets , D. Bonn, W.N. Hardy, and L. Taillefer, cond-mat/0203076

III. Fractionalized spin liquid

Leads to:

(a) Stable *hc/e* vortices

S. Sachdev, Phys. Rev. B 45, 389 (1992).

(b) Senthil flux memory effect

T. Senthil and M.P.A. Fisher, Phys. Rev. Lett. **8**6, 292 (2001)

Not observed

J. C. Wynn, D. A. Bonn, B. W. Gardner, Yu-Ju Lin, Ruixing Liang, W. N. Hardy, J. R. Kirtley, and K. A. Moler *Phys. Rev. Lett.* **8**7, 197002 (2001). D. A. Bonn, J. C. Wynn, B. W. Gardner, Yu-Ju Lin, Ruixing Liang, W. N. Hardy, J. R. Kirtley, and K. A. Moler *Nature*, **414**, 887 (2001).

- B. Keimer et al. Phys. Rev. B 46, 14034 (1992).
- S. Wakimoto, G. Shirane et al., Phys. Rev. B 60, R769 (1999).
- G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda, Science 278, 1432 (1997).
- Y. S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999).
- J. E. Sonier et al., cond-mat/0108479.
- C. Panagopoulos, B. D. Rainford, J. L. Tallon, T. Xiang, J. R. Cooper, and C. A. Scott, preprint.

Spin density wave order parameter for general ordering wavevector $S_{\alpha}(\mathbf{r}) = \Phi_{\alpha}(\mathbf{r})e^{i\mathbf{K}\cdot\mathbf{r}} + \text{c.c.}$

A longitudinal spin density wave necessarily has an accompanying modulation in the site charge densities, exchange and pairing energy per link *etc*. at half the wavelength of the SDW

"Charge" order: periodic modulation in local observables invariant under spin rotations and time-reversal

Order parmeter $\sim \sum_{\alpha} \Phi_{\alpha}^{2}(\mathbf{r})$

$$\delta \rho(\mathbf{r}) \propto S_{\alpha}^{2}(\mathbf{r}) = \sum_{\alpha} \Phi_{\alpha}^{2}(\mathbf{r}) e^{i 2\mathbf{K} \cdot \mathbf{r}} + \text{c.c.}$$

J. Zaanen and O. Gunnarsson, *Phys. Rev.* B 40, 7391 (1989).
H. Schulz, *J. de Physique* 50, 2833 (1989).
O. Zachar, S. A. Kivelson, and V. J. Emery, *Phys. Rev.* B 57, 1422 (1998).

Spin Peierls order

Bond-centered stripe order in a frustrated S=1/2 XY magnet

A. W. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino, cond-mat/0205270

<u>*First large scale*</u> numerical study of the destruction of Neel order in a S=1/2 antiferromagnet with full square lattice symmetry

Leads to even period bond-centered charge order upon doping

<u>Coupling between S=1/2 fermionic quasiparticles and</u> <u>collective mode of spin density wave order</u>

Strong constraints on the mixing of quasiparticles and the Φ_{α} collective mode by momentum and energy conservation: nodal quasiparticles can be essentially decoupled from nonzero *K* collective modes

Quantitative connection between spectra of quasiparticles (STM) and collective mode (neutron scattering) ?