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Quantum matter without quasiparticles
• Quasiparticles are long-lived excitations which can be combined to

yield the complete low-energy many-body spectrum

• Quasiparticles need not be electrons: they can be emergent excita-
tions which involve non-local changes in the wave function of the
underlying electrons e.g. Laughlin quasiparticles, visons . . .

• How do we rule out quasiparticle excitations? Examine the time
it takes to reach local thermal equilibrium. Equilibration takes a
long time while quasiparticles collide (in Fermi liquids, ⌧ ⇠ 1/T 2; in
gapped systems, ⌧ ⇠ e�/T ). Systems without quasiparticles saturate
a (conjectured) lower bound on the local-equilibration/de-phasing/
transition-to-quantum-chaos time

⌧' � C
~

kBT

where C is a T -independent constant.
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Quantum matter without quasiparticles
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Saturation requires fixed point with            
disorder and interactions                                                                

S. A. Hartnoll, Nature Physics 11, 54 (2015)                                            
M. Blake, PRL 117, 091601 (2016)

Quantum matter without quasiparticles

• Shortest possible local-equilibration/de-phasing/

transition-to-quantum-chaos with
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;

in gapped systems, ⌧ ⇠ e�/T
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Theories of non-Fermi liquids

• Sachdev-Ye-Kitaev (SYK) model

• Coupled SYK models:            
diffusive metals without 
quasiparticles

• Holographic Einstein-Maxwell-axion 
theory with momentum dissipation
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A fermion can move only
by entangling with another
fermion: the Hamiltonian
has “nothing but
entanglement”.

To obtain a non-Fermi liquid, we set tij = 0:

HSYK =

1

(2N)

3/2

NX

i,j,k,`=1

Jij;k` c
†
i c

†
jckc` � µ

X

i

c†i ci

Q =

1

N

X

i

c†i ci

HSYK is similar, and has identical properties, to the SY model.

Cold atom realization: 
I. Danshita, M. Hanada, and 
M. Tezuka, arXiv:1606.02454

SYK model



S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

Feynman graph expansion in Jij.., and graph-by-graph average,

yields exact equations in the large N limit:

G(i!) =
1

i! + µ� ⌃(i!)
, ⌃(⌧) = �J2G2

(⌧)G(�⌧)

G(⌧ = 0

�
) = Q.

Low frequency analysis shows that the solutions must be gapless

and obey

⌃(z) = µ� 1

A

p
z + . . . , G(z) =

Ap
z

for some complex A. The ground state is a non-Fermi liquid, with

a continuously variable density Q.

⌃ =
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• T = 0 Green’s function G ⇠ 1/
p
⌧

• T > 0 Green’s function implies conformal invariance
G ⇠ 1/(sin(⇡T ⌧))1/2

• Non-zero entropy as T ! 0, S(T ! 0) = NS0 + . . .

• These features indicate that the SYK model is dual to
the low energy limit of a quantum gravity theory of black
holes with AdS2 near-horizon geometry. The Bekenstein-
Hawking entropy is NS0.

• There is a scalar zero mode associated with the breaking
of reparameterization invariance down to SL(2,R). The
same pattern of symmetries is present in gravity theories
on AdS2.

• The dependence of S0 on the density Q matches the be-
havior of the Wald-Bekenstein-Hawking entropy of AdS2
horizons in a large class of gravity theories.

• The scalar zero mode leads to a linear-in-T specific heat

S(T ! 0) = NS0 +N�T + . . ..

An identical scalar zero model is also present in the low
energy limit of theories of quantum gravity on AdS2.

• The Lyapunov time to quantum chaos saturates the lower
bound both in the SYK model and in quantum gravity.

⌧L =
1

2⇡

~
kBT

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)
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W. Fu and S. Sachdev, PRB 94, 035135 (2016)

A better understanding of the above facts can be reached from the perspective of symmetry-

protected topological (SPT) phases. As shown recently in Ref. 14, the complex SYK model can be

thought of as the boundary of a 1D SPT system in the symmetry class AIII. The periodicity of 4

in N arises from the fact that we need to put 4 chains to gap out the boundary degeneracy without

breaking the particle-hole symmetry. In the Majorana SYK case, the symmetric Hamiltonian can

be constructed as a symmetric matrix in the Cli↵ord algebra Cl0,N�1, and the Bott periodicity

in the real representation of the Cli↵ord algebra gives rise to a Z8 classification[14]. Here, for

the complex SYK case, we can similarly construct the Cli↵ord algebra by dividing one complex

fermion into two Majorana fermions, and then we will have a periodicity of 4.

A. Green’s function

From the above definition of retarded Green’s function, we can relate them to the imaginary

time Green’s function as defined in Eq. (16), GR(!) = G(i!n ! ! + i⌘). In Fig. 3, we show a
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FIG. 3. Imaginary part of the Green’s function in real frequency space from large N and exact diagonal-

ization. The inset figure is zoomed in near ! = 0.

.

comparison between the imaginary part of the Green’s function from large N , and from the exact

diagonalization computation. The spectral function from ED is particle-hole symmetric for all N ,

11

We identify the infinite time limit of GB as the Edward-Anderson order parameter qEA, which can

characterize long-time memory of spin-glass:

qEA = lim
t!1

GB(t) (49)

Then qEA 6= 0 indicates that GB(!) ⇠ �(!). This is quite di↵erent from the fermionic case, where

we have GF (z) ⇠ 1/
p
z; this inverse square-root behavior also holds in the bosonic case without

spin glass order [1]. Fig. 10 is our result from ED, with a comparison between GB with GF . It is

evident that the behavior of GB is qualitatively di↵erent from GF , and so an inverse square-root

behavior is ruled out. Instead, we can clearly see that, as system size gets larger, GB’s peak value

increases much faster than the GF ’s peak value. This supports the presence of spin glass order.
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FIG. 10. Imaginary part of Green’s function for hardcore boson and fermion model. The peak near the

center gets much higher in the boson model when system size gets larger. The inset figure is zoomed in

near ! = 0.

Unlike the fermionic case, P 2 = 1 for allN in the bosonic model. We can apply similar symmetry

argument as in Ref. [14]: for the half-filled sector (only in even N cases), the level statistics obeys

the Wigner-Dyson distribution of Gaussian orthogonal random matrix ensembles, while in other

filling sectors, it obeys distribution of Gaussian unitary random matrix ensembles.

Our thermal entropy results for bosons are similar to the fermionic results: although the entropy

eventually approaches 0 at zero temperature, there is still a trend of a larger low temperature

entropy residue as the system size gets larger.

18

Large N solution of equations for G and ⌃ agree well with exact diagonal-
ization of the finite N Hamiltonian ) no spin-glass order

However, exact diagonalization of the same model with hard-core bosons
indicates the presence of spin-glass order in the ground state.

SYK model



A. Georges and O. Parcollet
PRB 59, 5341 (1999) 

A. Kitaev, unpublished
S. Sachdev, PRX 5, 041025 (2015)

After integrating the fermions, the partition function can be writ-

ten as a path integral with an action S analogous to a Luttinger-

Ward functional

Z =

Z
DG(⌧1, ⌧2)D⌃(⌧1, ⌧2) exp(�NS)

S = ln det [�(⌧1 � ⌧2)(@⌧1 + µ)� ⌃(⌧1, ⌧2)]

+

Z
d⌧1d⌧2⌃(⌧1, ⌧2)

⇥
G(⌧2, ⌧1) + (J2/2)G2

(⌧2, ⌧1)G
2
(⌧1, ⌧2)

⇤

At frequencies ⌧ J , the time derivative in the determinant is less

important, and without it the path integral is invariant under the

reparametrization and gauge transformations

⌧ = f(�)

G(⌧1, ⌧2) = [f 0
(�1)f

0
(�2)]

�1/4 g(�1)

g(�2)
G(�1,�2)

⌃(⌧1, ⌧2) = [f 0
(�1)f

0
(�2)]

�3/4 g(�1)

g(�2)
⌃(�1,�2)

where f(�) and g(�) are arbitrary functions.

A. Georges, O. Parcollet, and S. Sachdev, 
Phys. Rev. B 63, 134406 (2001)
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Let us write the large N saddle point solutions of S as

Gs(⌧1 � ⌧2) ⇠ (⌧1 � ⌧2)
�1/2 , ⌃s(⌧1 � ⌧2) ⇠ (⌧1 � ⌧2)

�3/2.

These are not invariant under the reparametrization symmetry but are in-

variant only under a SL(2,R) subgroup under which

f(⌧) =
a⌧ + b

c⌧ + d
, ad� bc = 1.

So the (approximate) reparametrization symmetry is spontaneously broken.

Reparametrization zero mode

Expand about the saddle point by writing

G(⌧1, ⌧2) = [f 0
(⌧1)f

0
(⌧2)]

1/4Gs(f(⌧1)� f(⌧2))

(and similarly for ⌃) and obtain an e↵ective action for f(⌧). This action

does not vanish because of the time derivative in the determinant which is

not reparameterization invariant.

J. Maldacena and D. Stanford, arXiv:1604.07818
See also  A. Kitaev, unpublished, and  J. Polchinski and  V. Rosenhaus, arXiv:1601.06768
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Connections of SYK to gravity and AdS2

horizons

• Reparameterization and gauge

invariance are the ‘symmetries’ of

the Einstein-Maxwell theory of

gravity and electromagnetism

• SL(2,R) is the isometry group of AdS2.

SYK model
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SYK model

Wenbo Fu, Yingfei Gu, S. Sachdev, unpublished

The couplings are given by thermodynamics (⌦ is the grand potential)

K = �
✓
@2

⌦

@µ2

◆

T

, � + 4⇡2E2K = �
✓
@2

⌦

@T 2

◆

µ

2⇡E =

@S0

@Q

With g(⌧) = e�i�(⌧)
, the action for �(⌧) and f(⌧) =

1

⇡T
tan(⇡T (⌧ + ✏(⌧))

fluctuations is

S�,f =

K

2

Z 1/T

0
d⌧(@⌧�+ i(2⇡ET )@⌧ ✏)2 �

�

4⇡2

Z 1/T

0
d⌧ {f, ⌧},

where {f, ⌧} is the Schwarzian:

{f, ⌧} ⌘ f 000

f 0 � 3

2

✓
f 00

f 0

◆2

.



The correlators of the density fluctuations, Q(⌧), and the energy fluctua-

tions �E � µ�Q(⌧) are time independent and given by

✓
h�Q(⌧)�Q(0)i h(�E(⌧)� µ�Q(⌧))�Q(0)i /T

h(�E(⌧)� µ�Q(⌧))�Q(0)i h(�E(⌧)� µ�Q(⌧))(�E(0)� µ�Q(0))i /T

◆
= T�s

where �s is the static susceptibility matrix given by

�s ⌘
✓

�(@2
⌦/@µ2

)T �@2
⌦/(@T@µ)

�T@2
⌦/(@T@µ) �T (@2

⌦/@T 2
)µ

◆
.
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One can also derive the thermodynamic properties from the large-N saddle point free

energy:

F

N
=

1

�


� log Pf (@⌧ � ⌃) +

1

2

Z
d⌧

1

d⌧
2

✓
⌃(⌧

1

, ⌧
2

)G(⌧
1

, ⌧
2

)� J2

4
G(⌧

1

, ⌧
2

)4
◆�

(8)

= U � S
0

T � �

2
T 2 + . . . (9)

In the second line we write the free energy in a low temperature expansion,3 where U ⇡
�0.0406J is the ground state energy, S

0

⇡ 0.232 is the zero temperature entropy [32, 4],

and �T = cv = ⇡↵
K

16

p
2�J

⇡ 0.396
�J

is the specific heat [11]. The entropy term can be derived

by inserting the conformal saddle point solution (2) in the e↵ective action. The specific

heat can be derived from knowledge of the leading (in 1/�J) correction to the conformal

saddle, but the energy requires the exact (numerical) finite �J solution.

3 The generalized SYK model

In this section, we will present a simple way to generalize the SYK model to higher di-

mensions while keeping the solvable properties of the model in the large-N limit. For

concreteness of the presentation, in this section we focus on a (1 + 1)-dimensional ex-

ample, which describes a one-dimensional array of SYK models with coupling between

neighboring sites. It should be clear how to generalize, and we will discuss more details of

the generalization to arbitrary dimensions and generic graphs in section 6.

3.1 Definition of the chain model

k

j

J 0
jklm

m

l
k l

j m

Jjklm

Figure 1: A chain of coupled SYK sites: each site contains N � 1 fermion with SYK
interaction. The coupling between nearest neighbor sites are four fermion interaction with
two from each site.

3Starting at T 3.77, this expansion is expected to also involve non-integer powers given by the dimensions
of irrelevant operators in the model.
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Coupled SYK models

Yingfei Gu, Xiao-Liang Qi, and D. Stanford, arXiv:1609.07832



SYK model

Coupled SYK models
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The correlators of the density fluctuations, Q(⌧), and the energy fluctua-

tions �E � µ�Q(⌧) are time independent and given by
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where �s is the static susceptibility matrix given by

�s ⌘
✓

�(@2
⌦/@µ2

)T @2
⌦/(@T@µ)

T@2
⌦/(@T@µ) �T (@2

⌦/@T 2
)µ

◆
.



Coupled SYK models
✓

hQ;Qik,! hE � µQ;Qik,! /T
hE � µQ;Qik,! hE � µQ;E � µQik,! /T

◆
=

⇥
i!(�i! +Dk2)�1

+ 1

⇤
�s

where the di↵usivities are related to the thermoelectric conductivities by

the Einstein relations

D =

✓
� ↵
↵T 

◆
��1
s .

The coupled SYK models realize a diffusive, 
metal with no quasiparticle excitations.

(a “strange metal”)



Theories of non-Fermi liquids

• Sachdev-Ye-Kitaev (SYK) model

• Coupled SYK models:            
diffusive metals without 
quasiparticles

• Holographic Einstein-Maxwell-axion 
theory with momentum dissipation



SYK model

• T = 0 Green’s function G ⇠ 1/
p
⌧

• T > 0 Green’s function implies conformal invariance
G ⇠ 1/(sin(⇡T ⌧))1/2

• Non-zero entropy as T ! 0, S(T ! 0) = NS0 + . . .

• These features indicate that the SYK model is dual to
the low energy limit of a quantum gravity theory of black
holes with AdS2 near-horizon geometry. The Bekenstein-
Hawking entropy is NS0.

• There is a scalar zero mode associated with the breaking
of reparameterization invariance down to SL(2,R). The
same pattern of symmetries is present in gravity theories
on AdS2.

• The dependence of S0 on the density Q matches the be-
havior of the Wald-Bekenstein-Hawking entropy of AdS2
horizons in a large class of gravity theories.

• The scalar zero mode leads to a linear-in-T specific heat

S(T ! 0) = NS0 +N�T + . . ..

An identical scalar zero model is also present in the low
energy limit of theories of quantum gravity on AdS2.

• The Lyapunov time to quantum chaos saturates the lower
bound both in the SYK model and in quantum gravity.

⌧L =
1

2⇡

~
kBT
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Holographic Metals and the Fractionalized Fermi Liquid

Subir Sachdev
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 23 June 2010; published 4 October 2010)

We show that there is a close correspondence between the physical properties of holographic metals

near charged black holes in anti–de Sitter (AdS) space, and the fractionalized Fermi liquid phase of the

lattice Anderson model. The latter phase has a ‘‘small’’ Fermi surface of conduction electrons, along with

a spin liquid of local moments. This correspondence implies that certain mean-field gapless spin liquids

are states of matter at nonzero density realizing the near-horizon, AdS2 ! R2 physics of Reissner-

Nordström black holes.

DOI: 10.1103/PhysRevLett.105.151602 PACS numbers: 11.25.Tq, 75.10.Kt, 75.30.Mb

There has been a flurry of recent activity [1–10] on the
holographic description of metallic states of nonzero den-
sity quantum matter. The strategy is to begin with a
strongly interacting conformal field theory (CFT) in the
ultraviolet (UV), which has a dual description as the
boundary of a theory of gravity in anti–de Sitter (AdS)
space. This CFT is then perturbed by a chemical potential
(!) conjugate to a globally conserved charge, and the
infrared (IR) physics is given a holographic description
by the gravity theory. For large temperatures T " !, such
an approach is under good control, and has produced a
useful hydrodynamic description of the physics of quan-
tum criticality [11]. Much less is understood about the low
temperature limit T # !: a direct solution of the classical
gravity theory yields boundary correlation functions de-
scribing a non-Fermi liquid metal [4], but the physical
interpretation of this state has remained obscure. It has a
nonzero entropy density as T ! 0, and this raises concerns
about its ultimate stability.

This Letter will show that there is a close parallel
between the above theories of holographic metals, and a
class of mean-field theories of the ‘‘fractionalized Fermi
liquid’’ (FFL) phase of the lattice Anderson model.

The Anderson model (specified below) has been a popu-
lar description of intermetallic transition metal or rare-
earth compounds: it describes itinerant conduction elec-
trons interacting with localized resonant states represent-
ing d (or f) orbitals. The FFL is an exotic phase of the
Anderson model, demonstrated to be generically stable in
Refs. [12,13]; it has a ‘‘small’’ Fermi surface whose vol-
ume is determined by the density of conduction electrons
alone, while the d electrons form a fractionalized spin
liquid state. The FFL was also found in a large spatial
dimension mean-field theory by Burdin et al. [14], and is
the ground state needed for a true ‘‘orbital-selective Mott
transition’’ [15]. The FFL should be contrasted from the
conventional Fermi liquid (FL) phase, in which there is a
‘‘large’’ Fermi surface whose volume counts both the con-
duction and d electrons: the FL phase is the accepted de-
scription of many ‘‘heavy fermion’’ rare-earth intermetal-

lics. However, recent experiments on YbRh2ðSi0:95Ge0:05Þ2
have observed an unusual phase for which the FFL is an
attractive candidate [16].
Here, we will describe the spin liquid of the FFL by the

gapless mean-field state of Sachdev and Ye [17] (SY). We
will then find that physical properties of the FFL are
essentially identical to those of the present theories of
holographic metals. Similar comments apply to other gap-
less quantum liquids [18] which are related to the SY state.
This agreement implies that nonzero density matter de-
scribed by the SY (or a related) state is a realization of the
near-horizon, AdS2 ! R2 physics of Reissner-Nordström
black holes.
We begin with a review of key features of the present

theory of holographic metals. The UV physics is holo-
graphically described by a Reissner-Nordström black
hole in AdS4. In the IR, the low-energy physics is captured
by the near-horizon region of the black hole, which has a
AdS2 ! R2 geometry [4]. The UV theory can be written as
a SUðNcÞ gauge theory, but we will only use gauge-
invariant operators to describe the IR physics. We use a
suggestive condensed matter notation to represent the IR,
anticipating the correspondence we make later. We probe
this physics by a ‘‘conduction electron’’ ck" (where k is a
momentum and " ¼" , # a spin index), which will turn out
to have a Fermi surface at a momentum k ' jkj ¼ kF. The
IR physics of this conduction electron is described by the
effective Hamiltonian [4,7]

H ¼ H0 þH1½d; c* þHAdS (1)

H0 ¼
X

"

Z d2k

4#2 ð"k +!Þcyk"ck"; (2)

with ck" canonical fermions and "k their dispersion, and

H1½d; c* ¼
X

"

Z d2k

4#2 ½Vkd
y
k"ck" þ V,

kc
y
k"dk"*; (3)

with Vk a ‘‘hybridization’’ matrix element. The dk" are
nontrivial operators controlled by the strongly coupled IR
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SYK model

• T = 0 Green’s function G ⇠ 1/
p
⌧

• T > 0 Green’s function implies conformal invariance
G ⇠ 1/(sin(⇡T ⌧))1/2

• Non-zero entropy as T ! 0, S(T ! 0) = NS0 + . . .

• These features indicate that the SYK model is dual to
the low energy limit of a quantum gravity theory of black
holes with AdS2 near-horizon geometry. The Bekenstein-
Hawking entropy is NS0.

• There is a scalar zero mode associated with the breaking
of reparameterization invariance down to SL(2,R). The
same pattern of symmetries is present in gravity theories
on AdS2.

• The dependence of S0 on the density Q matches the be-
havior of the Wald-Bekenstein-Hawking entropy of AdS2
horizons in a large class of gravity theories.

• The scalar zero mode leads to a linear-in-T specific heat

S(T ! 0) = NS0 +N�T + . . ..

An identical scalar zero model is also present in the low
energy limit of theories of quantum gravity on AdS2.

• The Lyapunov time to quantum chaos saturates the lower
bound both in the SYK model and in quantum gravity.

⌧L =
1

2⇡

~
kBT

A. Kitaev, KITP talk, 2015
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It would be nice to have a solvable model of holography.

theory bulk dual anom. dim. chaos solvable in 1/N

SYM Einstein grav. large maximal no
O(N) Vasiliev 1/N 1/N yes
SYK “`

s

⇠ `
AdS

” O(1) maximal yes

Slide by D. Stanford at Strings 2016, Beijing

black
hole
yes

yes
no
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�ĝ

 
R̂+ 6/L2 � 1

2

2X

i=1

(@'̂i)
2 � 1

4
F̂µ⌫ F̂

µ⌫
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• For '̂i = 0, we obtain the Reissner-Nördstrom-AdS

charged black hole, with a near-horizon AdS2 ⇥ T

2

near-horizon geometry.

• For '̂i = kxi, we obtain a similar solution but with

momentum dissipation (a bulk massive graviton).
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In the small torus limit, T ⌧ 1/R, where R is the size of

the torus, the theory dimensionally reduces to an Einstein-

Maxwell-dilaton theory in two dimensions
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Einstein-Maxwell-axion theory
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The Einstein-Maxwell-dilaton theory of the small torus limit, T ⌧ 1/R, is equiva-

lent on its boundary to the Schwarzian theory discussed earlier for the SYK model
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So the correlators of the density fluctuations, Q(⌧), and the energy fluctuations

�E � µ�Q(⌧) are time independent and given by
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Einstein-Maxwell-axion theory
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Finally, in the large torus limit, T � 1/R, we have the behavior of the di↵usive

metal without quasiparticles found in the coupled SYK models
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Non-Fermi liquids

• Shortest possible “phase coherence” time, fastest possible lo-

cal equilibration time, or fastest possible Lyapunov time to-

wards quantum chaos, all of order

~
kBT

• Realization in solvable SYK model, which saturates the lower

bound on the Lyapunov time.

• Coupled SYK models realize di↵usive metal without quasi-

particles.

• Remarkable holographic match to Einstein-Maxwell-axion the-

ories with momentum dissipation via the Schwarzian e↵ective

action.


