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Quantum matter without quasiparticles

e (Quasiparticles are long-lived excitations which can be combined to
yield the complete low-energy many-body spectrum
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e (Quasiparticles are long-lived excitations which can be combined to
yield the complete low-energy many-body spectrum

e (Quasiparticles need not be electrons: they can be emergent excita-
tions which involve non-local changes in the wave function of the
underlying electrons e.g. Laughlin quasiparticles, visons ...

e How do we rule out quasiparticle excitations?” Examine the time
it takes to reach local thermal equilibrium. Equilibration takes a
long time while quasiparticles collide (in Fermi liquids, 7 ~ 1/T%; in
gapped systems, 7 ~ 2/ ). Systems without quasiparticles saturate
a (conjectured) lower bound on the local-equilibration/de-phasing/
transition-to-quantum-chaos time

h
To 2 C—kBT

where C' is a T-independent constant. S. Sachdev, Quantum Phase Transitions (1999)
K. Damle and Sachdey, PRB 56, 8714 (1997)



Quantum matter without quasiparticles

e Shortest possible local-equilibration /de-phasing/
transition-to-quantum-chaos with

T C h S. Sachdev, Quantum Phase Transitions (1999)
¥ — kBT K. Damle and Sachdey, PRB 56, 8714 (1997)
Q > P. Kovtun, D.T. Son, and A.O. Starinets, PRL 94, [ | 601 (2005)
S 4ﬁkB

D -~ h Saturation requires fixed point with

— > (—— disorder and interactions

v kT S.A. Hartnoll, Nature Physics 11,54 (2015)
b M. Blake, PRL 117,091601 (2016)

TL Z J- Maldacena, S. H. Shenker and D. Stanford, JHEP 08 (2016)106
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In Fermi liquids, 7 ~ 1/ T?:
in gapped systems, 7 ~ e~/T
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J. A. N. Bruin, H. Sakai, R. S. Perry, A. P. Mackenzie, Science. 339, 804 (2013)



Theories of non-Fermi liquids

® Sachdev-Ye-Kitaev (SYK) model

® Coupled SYK models:
diffusive metals without

quasiparticles

® Holographic Einstein-Maxwell-axion
theory with momentum dissipation
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SYK model

1
E : T T E :
1,7k, =1

0 = %Zajcé

t A fermion can move only
by entangling with another
fermion: the Hamiltonian

J156.11 ce has “nothing but

entanglement” .

o 2

Cold atom realization:
|. Danshita, M. Hanada, and
M. Tezuka, arXiv:1606.02454

J8.9.12,14
® 14

S.Sachdev and J.Ye, Phys. Rev. Lett. 70, 3339 (1993)
A. Kitaey, unpublished; S. Sachdev, PRX 5, 041025 (2015)



SYK model

Feynman graph expansion in J;; , and graph-by-graph average,
yields exact equations in the large N limit:

S.Sachdev and |.Ye, Phys. Rev. Lett. 70, 3339 (1993)



SYK model

Feynman graph expansion in J;; , and graph-by-graph average,
yields exact equations in the large N limit:

Low frequency analysis shows that the solutions must be gapless
and obey

1 A

o) =p— Vit Gle)= -~

for some complex A. The ground state is a non-Fermi liquid, with
a continuously variable density O.

S.Sachdev and |.Ye, Phys. Rev. Lett. 70, 3339 (1993)



SYK model
e T =0 Green’s function G ~ 1//7

S.Sachdev and ].Ye, Phys. Rev. Lett. 70, 3339 (1993)
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e 7' > 0 Green’s function implies conformal invariance
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A. Georges and O. Parcollet PRB 59, 5341 (1999)



SYK model
e T =0 Green’s function G ~ 1/4/7

e 7' > 0 Green’s function implies conformal invariance

G ~ 1/(sin(nTT))/?

e Non-zero entropy as T' — 0, S(T"— 0) = NSy + . ..
A. Georges, O. Parcollet, and S. Sachdey, Phys. Rev. B 63, 134406 (2001)



SYK model
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Large N solution of equations for G and > agree well with exact diagonal-
ization of the finite N Hamiltonian = no spin-glass order

However, exact diagonalization of the same model with hard-core bosons
indicates the presence of spin-glass order in the ground state.

W. Fu and S. Sachdev, PRB 94,035135 (2016)



SYK model

After integrating the fermions, the partition function can be writ-
ten as a path integral with an action S analogous to a Luttinger-
Ward functional

A / DG(Tl, TZ)DZ(TL 7-2) exp(—NS) A. Georges, O. Parcollet, and S. Sachdey,
Phys. Rev. B 63, 134406 (2001)

S =1Indet [6(T — 72)(0r, + 1) — 2(11,T2)]

+/d71d722(71,72) G(79,m1) + (J?/2)G*(72,71)G* (11, T2)]



SYK model

After integrating the fermions, the partition function can be writ-
ten as a path integral with an action S analogous to a Luttinger-

Ward functional

A / DG(Tl, TZ)DZ(TL 7-2) exp(—NS) A. Georges, O. Parcollet, and S. Sachdey,
Phys. Rev. B 63, 134406 (2001)

S =1Indet [6(m — 12)(FL + 1) — X(11, 7))
i /dTldTQZ(Tl,TQ) [G(Tg,ﬁ) + (J2/2)G2(7-2,Tl)G2(7-177-2)]

At frequencies < J, the time derivative in the determinant is less
important, and without it the path integral is invariant under the

reparametrization and gauge transformations A. Georges and O Parcollet
PRB 59, 5341 (1999)
T = f(O') A. Kitaev, unpublished
(o1) S. Sachdev, PRX 5, 041025 (2015)
—1/4 o)
Glri,m) = [ (01) /" (02)] " LI Glo1, 00)
g(o2)
—3/4 9(01
S(r1,m) = [F(00) £ (02)] " 27 (04, )
g(o2)

where f(o) and g(o) are arbitrary functions.



SYK model

Let us write the large IV saddle point solutions of S as

Gs(ri —m2) ~ (11 —72) 712 S(m — 1) ~ (11— 72) %2
These are not invariant under the reparametrization symmetry but are in-
variant only under a SL(2,R) subgroup under which

at + b

So the (approximate) reparametrization symmetry is spontaneously broken.

J. Maldacena and D. Stanford, arXiv:1604.07818
See also A. Kitaey, unpublished, and ]. Polchinski and V. Rosenhaus, arXiv:1601.06768



SYK model

Let us write the large IV saddle point solutions of S as

f‘_i(’ﬁ —T‘)\N(’ﬁ —703_1/2 . Zg(’ﬁ —T‘)\N(’ﬁ —703_3/2.
o/ Connections of SYK to gravity and Adsgx -
val - horizons

e Reparameterization and gauge
So invariance are the ‘symmetries’ of .
she Einstein-Maxwell theory of
ocravity and electromagnetism

4L

k e SL(2,R) is the isometry group of Adsy

J. Maldacena and D. Stanford, arXiv:1604.07818
See also A. Kitaey, unpublished, and ]. Polchinski and V. Rosenhaus, arXiv:1601.06768



SYK model

Let us write the large IV saddle point solutions of S as

—1/2

GS(Tl—TQ)N(Tl—TQ) ] ES(Tl_TQ)N(Tl—TQ)_S/Q.

These are not invariant under the reparametrization symmetry but are in-
variant only under a SL(2,R) subgroup under which

at + b

So the (approximate) reparametrization symmetry is spontaneously broken.

Reparametrization zero mode
Expand about the saddle point by writing

G(r1,72) = [f' (1) f ()]G (f(11) — f(72))

(and similarly for ) and obtain an effective action for f(7). This action
does not vanish because of the time derivative in the determinant which is
not reparameterization invariant.

J. Maldacena and D. Stanford, arXiv:1604.07818
See also A. Kitaey, unpublished, and ]. Polchinski and V. Rosenhaus, arXiv:1601.06768



SYK model

. 1
With g(7) = e %(7) the action for ¢(7) and f(7) = —F tan(7wT (7 + €(7))

T

fluctuations is

o pUT o UT
S, s = 5/0 d7(67¢+i(27r8T)8Te)2—R/0 dr {f.7},

where { f, 7} is the Schwarzian:

_ S 3 (Y
=3 (5)

The couplings are given by thermodynamics (€2 is the grand potential)

0°() 0°()
K =— <—> . Y +HATEPK = — (—>
op? ) 1% )
Sy
2mE = ——=
& 50

Wenbo Fu,Yingfei Gu, S. Sachdeyv, unpublished



SYK model

. 1
With g(7) = e %(7) the action for ¢(7) and f(7) = —F tan(7nT' (7 + €(7))

T

fluctuations is

o pUT o UT
S, s = 5/0 d7(67¢+i(27r8T)8Te)2—R/0 dr {f.7},

where { f, 7} is the Schwarzian:

_ S 3 (Y
=3 (5)

The correlators of the density fluctuations, Q(7), and the energy fluctua-
tions 0 F — pudQ(7) are time independent and given by

( (0Q(7)0Q(0)) ((OE(T) = poQ(7))0Q(0)) /T ) _ Ty
(OE(T) = 10Q(7))0Q(0))  ((0E(7) = poQ(7))(0E£(0) — n0Q(0))) /T )

where 'y, i1s the static susceptibility matrix given by
[ —@Q/opt)r —620/(9Tow)
Xo =\ —T02Q/(0Tdy) —T(9°Q/0T?), )
Wenbo Fu,Yingfei Gu, S. Sachdeyv, unpublished



Theories of non-Fermi liquids

® Sachdev-Ye-Kitaev (SYK) model

" e Coupled SYK models:
diffusive metals without

quasiparticles

- /

® Holographic Einstein-Maxwell-axion
theory with momentum dissipation



Coupled SYK models
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Figure 1: A chain of coupled SYK sites: each site contains N > 1 fermion with SYK
interaction. The coupling between nearest neighbor sites are four fermion interaction with
two from each site.

Yingfei Gu, Xiao-Liang Qi, and D. Stanford, arXiv:1609.07832



SYK model

The correlators of the density fluctuations, Q(7), and the energy fluctua-
tions 0 F — udQ(7) are time independent and given by

( (0Q(7)0Q(0)) (OE(T) = 10Q(7))0Q(0)) /T ) ~ Ty
(OE(T) = poQ(7))0Q(0))  ((0L(T) = poQ(7))(0E(0) — noQ(0))) /T )

where Y, 1s the static susceptibility matrix given by

y :< —(0°Q/op?)r  0°Q/(0T0p) )
s =\ To2Q/(0Top) —T(52Q/0T?), |

Coupled SYK models

( (D5 Q) (E—pQ;9Q)., /T
(B —pQ;Q), (F—pQE—pQ), /T

where the diffusivities are related to the thermoelectric conductivities by

the Einstein relations
o o) (87 1
b= ( ol kK > Xs -

) = liw(—iw + Dk?)~" + 1] x5



Coupled SYK models

( (D5 Q) (E—pQ; Q). /T )
(B —pQ; Q) (BE—puQE—pQ) /T

where the diffusivities are related to the thermoelectric conductivities by
the Einstein relations

= [iw(—iw + DE*) ™" + 1] x5

The coupled SYK models realize a diffusive,
metal with no quasiparticle excitations.
(a “strange metal”)
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e T =0 Green’s function G ~ 1/4/7

e 7' > 0 Green’s function implies conformal invariance

G ~ 1/(sin(nTT))/?

e Non-zero entropy as T' — 0, S(T"— 0) = NSy + . ..



SYK model

T = 0 Green’s function G ~ 1/4/7

T > 0 Green’s function implies conformal invariance

G ~ 1/(sin(nTT))/?
Non-zero entropy as T"— 0, S(T' — 0) = NSy + . ..

These features indicate that the SYK model is dual to
the low energy limit of a quantum gravity theory of black
holes with AdSs near-horizon geometry. The Bekenstein-
Hawking entropy is IV .5y.

S.Sachdev, PRL 105, 151602 (2010)



SYK and Ad$S;

charge
density O

AdSQ X T2
ds* = (d¢? — dt?*)/(? + dx?
Gauge field: A = (£/()dt

S| = g

PHYSICAL REVIEW LETTERS [05, 151602 (2010)

S

Holographic Metals and the Fractionalized Fermi Liquid

Subir Sachdev

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 23 June 2010; published 4 October 2010)

We show that there 1s a close correspondence between the physical properties of holographic metals
near charged black holes in anti—de Sitter (AdS) space, and the fractionalized Fermi liquid phase of the
lattice Anderson model. The latter phase has a ““small” Fermi surface of conduction electrons, along with
a spin liquid of local moments. This correspondence implies that certain mean-field gapless spin liquids
are states of matter at nonzero density realizing the near-horizon, AdS, X R? physics of Reissner-
Nordstrom black holes.



SYK model

T = 0 Green’s function G ~ 1/4/7

T > 0 Green’s function implies conformal invariance

G ~ 1/(sin(nTT))/?
Non-zero entropy as T"— 0, S(T' — 0) = NSy + . ..

These features indicate that the SYK model is dual to
the low energy limit of a quantum gravity theory of black
holes with AdSs near-horizon geometry. The Bekenstein-
Hawking entropy is IV .5y.

There is a scalar zero mode associated with the breaking
of reparameterization invariance down to SL(2,R). The
same pattern of symmetries is present in gravity theories

on AdSQ .
A. Kitaev, KITP talk, 2015



SYK model

e The dependence of Sy on the density © matches the be-
havior of the Wald-Bekenstein-Hawking entropy of AdSs
horizons in a large class of gravity theories.

S.Sachdev PRX 5,041025 (2015)




SYK model

e The dependence of Sy on the density © matches the be-
havior of the Wald-Bekenstein-Hawking entropy of AdSs
horizons in a large class of gravity theories.

e The scalar zero mode leads to a linear-in-71" specific heat
S(T%O) = NSy + N~YT +....

An identical scalar zero model is also present in the low
energy limit of theories of quantum gravity on AdSs.
J. Maldacena and D. Stanford, arXiv:1604.078 18



SYK model

e The dependence of Sy on the density © matches the be-
havior of the Wald-Bekenstein-Hawking entropy of AdSs
horizons in a large class of gravity theories.

e The scalar zero mode leads to a linear-in-71" specific heat
S(T%O) = NSy + N~YT +....

An identical scalar zero model is also present in the low
energy limit of theories of quantum gravity on AdSs.

e The Lyapunov time to quantum chaos saturates the lower
bound both in the SYK model and in quantum gravity.

I h

N 21 k BT
A. Kitaev, KITP talk, 2015
J. Maldacena and D. Stanford, arXiv:1604.07818

TL



It would be nice to have a solvable model of holography.

black
theory || bulk dual anom. dim. | chaos solvable in 1/N | hole
SYM Einstein grav. | large maximal | no yes
O(N) || Vasiliev 1/N 1/N yes no
SYK “Us ~ Lags” O(1) maximal | yes yes
column
added
by SS

Slide by D. Stanford at Strings 2016, Beijing




AdSQ X T2
ds? = (d¢? — dt?)/(? + dz
Gauge field: A = (£/()dt

Y. Bardoux, M. M. Caldarelli,and C. Charmousis, JHEP 05 (2012) 054
D.Vegh, arXiv:1301.0537.

R.A. Davison, PRD 88 (2013) 086003.

M. Blake and D.Tong, PRD 88 (2013), 106004.

T.Andrade and B.Withers, JHEP 05 (2014) 101.

e For ¢, = 0, we obtain the Reissner-Nordstrom-AdS
charged black hole, with a near-horizon AdS, x T
near-horizon geometry.

e For ¢, = kx;, we obtain a similar solution but with
momentum dissipation (a bulk massive graviton).

charge
density O

8| e 13



charge
density O

AdSQ X T2
ds? = (d¢? — dt?)/(? + dz
Gauge field: A = (£/()dt

Y. Bardoux, M. M. Caldarelli,and C. Charmousis, JHEP 05 (2012) 054
D.Vegh, arXiv:1301.0537.

R.A. Davison, PRD 88 (2013) 086003.

M. Blake and D.Tong, PRD 88 (2013), 106004.

T.Andrade and B.Withers, JHEP 05 (2014) 101.

8| e 13

In the small torus limit, 7' < 1/R, where R is the size of
the torus, the theory dimensionally reduces to an Einstein-
Maxwell-dilaton theory in two dimensions

1
/dQ.CC\/ ( PR+ e?/2(6/L?) — m2e /2 — 163¢/2FabF“b> ,

A.Almheiri and J. Polchinski, JHEP 1511 (2015) 014; A.Almheiri and B. Kang, arXiv:1606.04108;
M. Cvetic and |. Papadimitriou, arXiv:1608.07018



Einstein-Maxwell-axion theory

The Einstein-Maxwell-dilaton theory of the small torus limit, 7" < 1/ R, is equiva-
lent on its boundary to the Schwarzian theory discussed earlier for the SYK model

1/T I 1/T
dr {faT}_I_Z— dT(aT¢){faT}

2
47T 0

o UT
S¢.f = 5_/0 dr(0,¢)% — -

2
47T 0

So the correlators of the density fluctuations, Q(7), and the energy fluctuations
0F — 1o Q(7) are time independent and given by

( (0Q(7)0Q(0)) (OE(T) — 10Q(7))0Q(0)) /T ) ~ Ty
(OE(T) = p0Q(7))0Q(0))  ((0E(T) = poQ(7))(0E(0) — n0Q(0))) /T )

where y, 1s the static susceptibility matrix given by

_( —(0*Q)op*)r  —0°Q/(9Top)
Xs = ( —T9*Q/(0Tou) —T(9*Q/0T?), >

A. Kitaev, unpublished; |. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857;
K. Jensen, arXiv:1605.06098; ]. Engelsoy, T.G. Mertens, and H.Verlinde, arXiv:1606.03438



Einstein-Maxwell-axion theory

Finally, in the large torus limit, 7" > 1/R, we have the behavior of the diffusive
metal without quasiparticles found in the coupled SYK models

( (D5 Qo (E—pQ: Q) /T
<

T - 2\—1

where the diffusivities are related to the thermoelectric conductivities by the
Einstein relations

Y. Bardoux, M. M. Caldarelli,and C. Charmousis, JHEP 05 (2012) 054
D.Vegh, arXiv:1301.0537.

R.A. Davison, PRD 88 (2013) 086003.

M. Blake and D.Tong, PRD 88 (2013), 106004.

T.Andrade and B.Withers, JHEP 05 (2014) 101.



Non-Fermi liquids

Shortest possible “phase coherence” time, fastest possible lo-
cal equilibration time, or fastest possible Lyapunov time to-

h
kT

wards quantum chaos, all of order

Realization in solvable SYK model, which saturates the lower
bound on the Lyapunov time.

Coupled SYK models realize diffusive metal without quasi-
particles.

Remarkable holographic match to Einstein-Maxwell-axion the-
ories with momentum dissipation via the Schwarzian effective
action.



