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Square lattice antiferromagnet
H=Y J;S;-S;
(i5)

Ground state has long-range Néel order

Order parameter is a single vector field ¢ = n; S,
n; = £1 on two sublattices

(@) # 0 in Néel state.



Antiferromagnetic (Neel) order in the insulator

No entanglement of spins




Weaken some bonds to induce spin

entanglement in a new quantum phase
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Ground state Is a product of pairs
of entangled spins.



Phase diagram as a function of the ratio of
exchange interactions, A
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Neutron scattering

G. Xu, C. Broholm, Yeong-Ah Soh, G. Aeppli, J. F. DiTusa, Y. Chen,
M. Kenzelmann, C. D. Frost, T. Ito, K. Oka, and H. Takagi,
Science 317, 1049 (2007).
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Neutron scattering linewidth

4
® Gaussian
3 - © Lorentzian
S
g Parameter free
= 2 prediction by K. Damle
; and S. Sachdev, Phys.
1= oo 7, U . - | Rev. B 57, 8307 (1998)
o 0 : Y2 B&N105 from multiple collisions
oo .2 o0, |with universal,
0 20 40 60 80 100 120 140 quantum S-matrices

T(K)

G. Xu, C. Broholm, Yeong-Ah Soh, G. Aeppli, J. F. DiTusa, Y. Chen,
M. Kenzelmann, C. D. Frost, T. Ito, K. Oka, and H. Takagi,
Science 317, 1049 (2007).



Phase diagram as a function of the ratio of
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Square lattice antiferromagnet
H=Y J;S;-S;
(i5)

Ground state has long-range Néel order

Order parameter is a single vector field ¢ = n; S,
n; = £1 on two sublattices

(@) # 0 in Néel state.



Square lattice antiferromagnet

H = Z J@]S_{L ' gj
(i7)

Destroy Neel order by perturbations which preserve full square
lattice symmetry e.g. second-neighbor or ring exchange.

What is the state with (¢) =0 ?



Square lattice antiferromagnet

H= ZJZ]

Destroy Neel order by perturbations which preserve full square
lattice symmetry e.g. second-neighbor or ring exchange.

What 1s the state with <c§ > =07?



L GW theory for guantum criticality

Landau-Ginzburg-Wilson theory: write down an effective action
for the antiferromagnetic order parameter ¢ by expanding in powers

of ¢ and its spatial and temporal derivatives, while preserving

all symmetries of the microscopic Hamiltonian

1
890 = /dQCCCZT [5 (02 (vaz@)f T (67'95)2 + 5952) +u (932)2]

S. Chakravarty, B.l. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989)



L GW theory for guantum criticality

Landau-Ginzburg-Wilson theory: write down an effective action
for the antiferromagnetic order parameter ¢ by expanding in powers
of ¢ and its spatial and temporal derivatives, while preserving

all symmetries of the microscopic Hamiltonian

1 . . - o 2
Sy = /dedT [5 (02 (Va@)" + (0:9)" + 8902) +u (7°) ]
A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B 49, 11919 (1994)

State with no broken symmetries. Fluc-
tuations of ¢ about ¢ = 0 realize a sta-

ble S = 1 quasiparticle with energy e, =
Vs + 2k?

() # 0

Néel state <90> =0

-
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L GW theory for guantum criticality

Landau-Ginzburg-Wilson theory: write down an effective action
for the antiferromagnetic order parameter ¢ by expanding in powers
of ¢ and its spatial and temporal derivatives, while preserving

all symmetries of the microscopic Hamiltonian

1
890 = /dQSCdT [5 (02 (vx¢)2 T (67'95)2 + 8952) +u (952)2]

A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B 49, 11919 (1994)

However, S = 1/2 antiferromagnets on

the square lattice have no such state.

() # 0

Néel state <95> =0
—_—mm
S S




There is no state with a gapped, stable S=1
quasiparticle and no broken symmetries
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Possible theory for fractionalization and topological order

Decompose the Néel order parameter into spinors

—

P = 2,0a37%3

where ¢ are Pauli matrices, and z, are complex spinors which carry
spin S = 1/2.
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Decompose the Néel order parameter into spinors
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where ¢ are Pauli matrices, and z, are complex spinors which carry
spin S = 1/2.

Key question: Can the z, become the needed S = 1/2 exci-
tations of a fractionalized phase 7



Possible theory for fractionalization and topological order

Decompose the Néel order parameter into spinors

—

P = 2,0a37%3

where ¢ are Pauli matrices, and z, are complex spinors which carry
spin S = 1/2.

Key question: Can the z, become the needed S = 1/2 exci-
tations of a fractionalized phase 7

Effective theory for spinons must be invariant under the U(1) gauge

transformation

2, — €2,



Possible theory for fractionalization and topological order

Naive expectation: Low energy spinon theory for “quantum dis-
ordering” a Néel state is

S, = /d%dT[cQ(VxiAx)za|2+|((?TiAT)za|2+sza2

2 1
+u (|Za|2> + @(Guw\ayA)\)Q



Possible theory for fractionalization and topological order

Naive expectation: Low energy spinon theory for “quantum dis-
ordering” a Néel state is

S, = /dedT[czKVxiAx)za|2+|(8TiAT)za|2+sza2

2 1
+ u (|Za|2> -+ 4—62(€/,L1/>\8VA>\)2

Spin liquid state with stable S = 1/2 z,

spinons, and a gapless U(1) photon A,
representing the topological order.

(za) # 0

Néel state <Za> =0
—
S S




Possible theory for fractionalization and topological order

Naive expectation: Low energy spinon theory for “quantum dis-
ordering” a Néel state is

S, = /dedT[02|(VwiAx)za|2+|(8Tz’AT)za|2+sza2

2 1
+ u (|Za|2> -+ @(Elm/}\ayA)\)z

However, monopoles in the A, field will
proliferate because of the gap to z, exci-
<Za> % 0 tations, and lead to confinement of z,.

Néel state
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Z, gauge theory for fractionalization and topological order

e Discrete gauge theories do have deconfined phases in 2+1 dimensions.



Z, gauge theory for fractionalization and topological order

e Discrete gauge theories do have deconfined phases in 2+1 dimensions.

e Find a collective excitation ® with the gauge transformation

O — 2P

e Higgs state with (®) # 0 is described by the fractionalized phase of a
Z5 gauge theory in the which the spinons z, carry Zs gauge charges (E.

Fradkin and S. Shenker, Phys. Rev. D 19, 3682 (1979)).

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
A. Chubukov, T. Senthil, and S. Sachdev Phys. Rev. Lett. 72, 2089 (1994).



Z, gauge theory for fractionalization and topological order

Discrete gauge theories do have deconfined phases in 2+1 dimensions.

Find a collective excitation ® with the gauge transformation
d — 627;9(1)

Higgs state with (®) # 0 is described by the fractionalized phase of a
Z5 gauge theory in the which the spinons z, carry Zs gauge charges (E.
Fradkin and S. Shenker, Phys. Rev. D 19, 3682 (1979)).

What 1s ® in the antiferromagnet 7 Its physical interpretation becomes
clear from its allowed coupling to the spinons:

S.o = /dQTdT ADP*€np200:25 + c.C.]

From this coupling it follows that the states with (®) # 0 have coplanar
spin correlations.

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
A. Chubukov, T. Senthil, and S. Sachdev Phys. Rev. Lett. 72, 2089 (1994).



Collinear magnetic order with (®) = 0.

A spin density wave:

(S;) o (cos(K - r;),sin(K - r;), 0)

B = (@7



Coplanar magnetic order with (®) # 0.

A spin density wave:
(S;) o (cos(K - r;),sin(K - r;),0)

with
K= (m+(®), 7+ (D)).

Experimental realization: CsCuCl,



Phase diagram of gauge theory of spinons

1
S, = /dQ:z:dT [(au —iA)) 20| + 51 120 —|—u(|za|2)2—|— ——(€r0,Ay)?

4e?

U(1) spin liquid unstable to confinement

(za) # 0 <Za> =0

Néel state

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)



Phase diagram of gauge theory of spinons

. 2 1
S.o = /inBdT [(au - ZAM)%P + 51 |2al” +u (Izal?)” + @(Euu,\@AQQ

+ (9, — ZiAu)(I”2 + 59| @[ + a|P|* + AP*€0,320,0223 + c.C.
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(za) 70, {®) =0 (za) =0, (®) =0

Néel state
S1

Z9 spin liquid with bosonic spinons z,

(za) =0, () #0

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)
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+ (9, — ZiAu)(I”2 + 59| @[ + a|P|* + AP*€0,320,0223 + c.C.

S92

U(1) spin liquid unstable to confinement

(za) 70, {®) =0 (za) =0, (®) =0

Néel state

Z9 spin liquid with bosonic spinons z,

<Zoz>:()7 <(I)>7£O

£0, (@) £0

Spiral state

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)



Characteristics of Z, spin liquid

e T'wo classes of gapped excitations:

— Bosonic spinons z, which carry Z, gauge charge

— /5 vortex associated with 27n winding in phase of ®. This vortex
appears as a 7 flux-tubes to spinons

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)
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— Z5 vortex associated with 27n winding in phase of ®. This vortex
appears as a 7 flux-tubes to spinons

e Ground state degeneracy is sensitive to topology: a P-vortex can be
inserted without energy cost in each “hole”: 4-fold degeneracy on a torus.

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
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Characteristics of Z, spin liquid

e T'wo classes of gapped excitations:

— Bosonic spinons z, which carry Z, gauge charge

— Z5 vortex associated with 27n winding in phase of ®. This vortex
appears as a 7 flux-tubes to spinons

e Ground state degeneracy is sensitive to topology: a P-vortex can be
inserted without energy cost in each “hole”: 4-fold degeneracy on a torus.

e Formulation in lattice model as an ‘odd’ Z5 gauge theory (R. Jalabert
and S. Sachdev, Phys. Rev. B 44, 686 (1991); T. Senthil and M. P. A.
Fisher, Phys. Rev. B 62, 7850 (2000))

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)



Characteristics of Z, spin liquid

Two classes of gapped excitations:

— Bosonic spinons z, which carry Z, gauge charge

— Z5 vortex associated with 27n winding in phase of ®. This vortex
appears as a 7 flux-tubes to spinons

Ground state degeneracy is sensitive to topology: a ®-vortex can be
inserted without energy cost in each “hole”: 4-fold degeneracy on a torus.

Formulation in lattice model as an ‘odd’ Z5 gauge theory (R. Jalabert
and S. Sachdev, Phys. Rev. B 44, 686 (1991); T. Senthil and M. P. A.
Fisher, Phys. Rev. B 62, 7850 (2000))

Structure identical to that found later in exactly solvable model: the Z5
toric code (A. Kitaev, quant-ph/9707021).

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)



Characteristics of Z, spin liquid

Two classes of gapped excitations:

— Bosonic spinons z, which carry Z, gauge charge

— Z5 vortex associated with 27n winding in phase of ®. This vortex
appears as a 7 flux-tubes to spinons

Ground state degeneracy is sensitive to topology: a ®-vortex can be
inserted without energy cost in each “hole”: 4-fold degeneracy on a torus.

Formulation in lattice model as an ‘odd’ Z5 gauge theory (R. Jalabert
and S. Sachdev, Phys. Rev. B 44, 686 (1991); T. Senthil and M. P. A.
Fisher, Phys. Rev. B 62, 7850 (2000))

Structure identical to that found later in exactly solvable model: the Z5
toric code (A. Kitaev, quant-ph/9707021).

Same states (without spinons) and Zs gauge theories found to describe
liquid phases of quantum dimer models (R. Moessner and S. L. Sondhi,
Phys. Rev. Lett. 86, 1881 (2001).

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)
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U(1) spin liquid unstable to confinement

(2a) =0, () =0

<ZOA>#07 <(I)>:O

Néel state
S1

Z9 spin liquid with bosonic spinons z,

(za) =0, () #0

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)
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Ouantum theory for destruction of Neel order

Partition function on cubic lattice in spacetime
zZ = H/d(ﬁaé (90 exp ( nga ¢a+u>

LGW theory: weights in partition function are those of a
classical ferromagnet at a “temperature” g

Small g = ground state has Neel order with (¢) = 0

Large g = paramagnetic ground state with <c§ > =0



Missing ingredient: Spin Berry Phases

67LA/2



Ouantum theory for destruction of Neel order

Partition function on cubic lattice in spacetime
zZ = H/d(ﬁaé (90 exp ( nga ¢a+u>

LGW theory: weights in partition function are those of a
classical ferromagnet at a “temperature” g

Small g = ground state has Neel order with (¢) = 0

Large g = paramagnetic ground state with <c§ > =0



Ouantum theory for destruction of Neel order

Coherent state path integral on cubic lattice in spacetime
Z = H / dSOa ) exXp ( Z Pa - Qpa—l—,u ZSBerry)
a,u

Modulus of weights in partition function: those of a
classical ferromagnet at a “temperature” g

Small g = ground state has Neel order with (¢) = 0

Large g = paramagnetic ground state with <c§ > =0

Berry phases lead to large cancellations between different

time histories



Ouantum theory for destruction of Neel order

Partition function on cubic lattice

2= H/dgoa )exp( ZS%, Patp + ZSBerry)
a,p
T E

(!-.lﬂ
U N

Rewrite partition function in

terms of spinors z__,

with a =1, and

— *

Qg = Zaocoaﬁ Za[g

S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)



Ouantum theory for destruction of Neel order

Partition function on cubic lattice

z = H/dg@a )6Xp< nga Spa—l—,u ZSBerry)

a,H

Partition function expressed as a gauge theory of spinor
degrees of freedom

Z = H/dzaadAaué Z Zaal® — 1

1 |
x  1Aq -
X exp | — E 200 M Zadgpa T E NaAar
a, it a

S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)



Large g effective action for the A, after integrating z,,,

1 .
Z = H / dA,,, exp (262 Z cos (A Aay — AV Ag,) +1 Z 77aAa7>
a, i [] a

with e’ ~g”
This 1s compact QED in 3 spacetime dimensions with

static charges +1 on two sublattices.

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990).
K. Park and S. Sachdev, Phys. Rev. B 65, 220405 (2002).



Duality mapping:
The low energy continuum theory is

/d2rd7 [2%(6,“/)\8,/14)\)2}

€

Decouple this to
2

Integrate over A, to obtain constraint €,,,0,.Jx = 0. Solve this constraint
by J, = 0,x to obtain the dual theory

/ d*rdr [‘;—Q(aux)ﬂ

This theory has a global shift symmetry x — x + constant. This symmetry
is spontaneously broken, and the massless x particle (i.e. the photon) is
the Goldstone boson of this shift symmetry.



Consequences of Berry phases:

e The continuous shift symmetry is an enlargement of the Z, spatial
rotation symmetry of the square lattice. So this spatial rotation sym-
metry is spontaneously broken in the free photon phase.

2
V =exp (z%)
€0

is equivalent to the valence bond solid (VBS) operator W.;s, and
(V) ~ (Tybs) # 0

e The monopole operator



Characterization of VBS state with <c§ > =0

Such a state breaks the symmetry of rotations by nr /2 about lattice sites,
and has <‘vas> =0, where W

Woinli) = 35, - §ervetantes oo
(i7)

1s the VBS order parameter
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Characterization of VBS state with <q_5 > =0

Such a state breaks the symmetry of rotations by nr /2 about lattice sites,
and has <‘vas> =0, where W

\Ijvbs(i) _ Z S_v'z . S_fjei arctan(r; —r;)
(i7)

1s the VBS order parameter
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Characterization of VBS state with <c§ > =0
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Phase diagram of gauge theory of spinons
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T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004).
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Hsuey=J ) 8i-8;—Q ) (Si-S;—1) (Sk-Si—1)

Im[qjvbs]

Probability distribution
of VBS order Wyps at
guantum critical point

Re[qjvbs]

Emergent circular
symmetry IS

evidence for U(1)
photon and
topological order

A.W. Sandvik, Phys. Rev. Lett. 98, 2272020 (2007).
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Hole dynamics in an antiferromagnet across a deconfined

quantum critical point,
R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil,

Physical Review B 75, 235122 (2007)

Algebraic charge liquids and the underdoped cuprates,
R. K. Kaul, Y. B. Kim, S. Sachdev, and T. Senthil,
arX1v:0706.21877, Nature Physics, in press.



Phase diagram of doped antiferromagnets
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Phase diagram of lightly doped antiferromagnet
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Pictorial explanation of factor of 2:

e In the Néel phase, sublattice index is identical to spin index.
So for each valley and momentum, degeneracy of the hole
state 1s 2.

e In the VBS state, the sublattice index and the spin index are
distinct. So for each valley and momentum, degeneracy of
the hole state is 4.



e Begin with the representation of the quantum antiferromagnet
as the lattice CP! model:

:__Z a“2a+ua+zz77a ar

e Write the electron operator at site r, ¢, () in terms of fermionic
holon operators fi

Ca(r) = f l(r)zm for r on sublattice A
’ Eaplt 1(7“)2;55 for r on sublattice B

Note that the holons f; have charge s under the U(1) gauge field
A,



e Choose the dispersion, e(E) of the f1 in momentum space so that
its minima are at (+7/2,+7/2). To avoid double-counting, these

dispersions must be restricted to be within the diamond Brillouin
zZone.

Sf—/dTZ/ fTE 0. —isA, + e(k —SA))fS()

e Include the hopping between opposite sublattices (Shraiman-
Siggia term):

St — —tz T —|—hC

— ¢ Z (M) 2a) 8a5fi(r’)z;f5
()

e Complete theory for doped antiferromagnet:

S:SZ+Sf+St
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A new non-Fermi liquid phase:
The holon metal
An algebraic charge liquid.

Ignore compactness in A, and Berry phase term.

Charge e fermions fs form Fermi surfaces and carry charges s = +1

(Quasi-long range order in a variety of VBS and pairing correlations.

Area of each Fermi pocket,
A = (2m)*z /4.

The Fermi pocket will show sharp
magnetoresistance oscillations, but
it is invisible to photoemission.

Neutral spinons z, are gapped.
under the U(1) gauge field A4,,.
g N e
. . .\
S :
7/
y/
N\
\\ ..... //
LN s
M S
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Quantum oscillations and
the Fermi surface in an

underdoped high T, su-

perconductor (ortho-IT or-
dered YBayCusOg 5).
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@ Holon pairing leading to d-wave superconductivity

@ First consider holon pairing in the Neel state, where
holon=hole.

@ This was studied in V. V. Flambaum, M. Yu. Kuchiev, and
O. P. Sushkov, Physica C 227, 267 (1994); V. I. Belincher et
al., Phys. Rev. B 51, 6076 (1995). They found p-wave
pairing of holons, induced by spin-wave exchange from the
sublattice mixing term &S, . This corresponds to d-wave
pairing of physical electrons



@ Holon pairing leading to d-wave superconductivity
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@ Holon pairing leading to d-wave superconductivity

Gap
nodes

We assume the same pairing holds across a transition involving loss
of long-range Néel order. The resulting phase is another algebraic
charge liquid - the holon superconductor. This superconductor
has gapped spinons with no electrical charge, and spinless, nodal
Bogoliubov-Dirac quasiparticles. The superconductivity does not
gap the U(1) gauge field A,,, because the Cooper pairs are gauge
neutral.



Low energy theory of holon superconductor

4 two-component Dirac quasiparticles coupled to a U(1) gauge field

1
) (E/LVAﬁl/A)\)2

2e

2
'Sholon superconductor — /de r

+ Zw — ivp (0 — iA) T — wp (8, — iA)TY) s



Low energy theory of holon superconductor

External vector potential A couples as
Ha=j A
where
jo = vr (Vs = wlen) e =ve (Vlvs — vl

are conserve charges of Sholon superconductor-
Fundamental property: The superfluid density, ps, has the fol-
lowing = and 1" dependence:

ps(x,T) =cx — RkpT

where ¢ is a non-universal constant and K is a universal constant
obtained in a 1/N expansion (N = 4 is the number of Dirac
fermions):

0.307
R =0.4412 4+ ——
+
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Conclusions

|. Theory for Z; and U(1) spin liquids in quantum
antiferromagnets, and evidence for their realization in
model spin systems.

2. Algebraic charge liquids appear naturally upon adding
fermionic carriers to spin liquids with bosonic spinons.
These are conducting states with topological order.

3.The holon metal/superconductor; obtained by doping a
Neel-ordered insulator, matches several observed
characteristics of the underdoped cuprates.
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Ultracold 8"Rb atoms - ],o.gsons

a Superfluid state . / w \

M. Greiner, O. Mandel, T. Esslin . W. Hénsch, and I. Bloch, Nature 415, 39 (2002).



The insulator:




Excitations of the insulator:

Particles ~

Holes ~



Excitations of the insulator:

Particles ~

Density of particles = density of holes =
“relativistic” field theory for ):

- u
S= [ drdr (1000 + AT + sl + Sl

Insulator < (¥) =0
Superfluid < (1) # 0

Holes ~



Superfluid Insulator
()=0 W)=0
O = o=0

S S

c

— 2 -
S= [ drdr [|0:0P + AT + sl + Sl



Conformal field theory:

Wilson-Fisher fixed point

3 ] Insulator
uperflui
<1P > 20 <1P > =0
o=0
O =
S S

c

— U
S= [ drdr [|0:0P + AT + sl + Sl



Superfluid-insulator transition at fractional filling f

® ® ®
F=1/2
O oo Superfluid
@
® o—0 0
—~@> @
® (0@
e = @ Q’ &
<@> @> Insulator
® (0@
= = @ Q’ &
<@ @

Possible continuous superfluid-insulator transition is
described by a more complex CFT

L. Balents, L. Bartosch, A. Burkov, S. Sachdev, and K. Sengupta, Physical Review B 71, 144508 (2005)



Superfluid-insulator transition at fractional filling f

F=1/16

Possible continuous
superfluid-insulator
transition is
described by a more

Complex CFT -'iii'. .'iii'- .'iii'- -'iii'. .'i
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Dope the antiferomagnets with charge carriers of density x
by applying a chemical potential

Cay 9oNag 10CuO,Cl, Bi; 25r; gCag gDy 2CU,0,
S —







Scanning tunnelling microscopy



STM studies of the underdoped superconductor

Cay 9oNag 10CuO,Cl, Bi; 25r; gCag gDy 2CU,0,
S —




Topograph
Cay 9oNag 10CuO,Cl, Bi; 25ry 5Cag gDy 2CU,0,

Y. Kohsaka et al. Science 315, 1380 (2007)




dI/dV Spectra
Cay 9oNag 10CuO,Cl, Bi; 25ry 5Cag gDy 2CU,0,
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Intense Tunneling-Asymmetry (TA)
variation are highly similar
Y. Kohsaka et al. Science 315, 1380 (2007)




Topograph
Cay 9oNag 10CuO,Cl, Bi; 25ry 5Cag gDy 2CU,0,

Y. Kohsaka et al. Science 315, 1380 (2007)




Tunneling Asymmetry (TA)-map at E=150meV
Cay 9oNag 10CuO,Cl, Bi; 25ry 5Cag gDy 2CU,0,

Y. Kohsaka et al. Science 315, 1380 (2007)




Tunneling Asymmetry (TA)-map at E=150meV
Cay 9oNag 10CuO,Cl, Bi; 25ry 5Cag gDy 2CU,0,
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Y. Kohsaka et al. Science 315, 1380 (2007)




Tunneling Asymmetry (TA)-map at E=150meV
Cay 9oNag 10CuO,Cl, Bi; 25ry 5Cag gDy 2CU,0,

Indistinguishable bond-centered TA contrast

with disperse 4a,-wide nanodomains
Y. Kohsaka et al. Science 315, 1380 (2007)




TA Contrast is at oxygen site (Cu-O-Cu bond-centered)

R map (150 mV) ] C01.88N00.12CU02C|2, 4 K
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TA Contrast is at oxygen site (Cu-O-Cu bond-centered)

R map (150 mV) ] C01.88N00.12CU02C|2, 4 K
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Evidence for VBS order - a valence bond supersolid

S. Sachdev and N. Read, Int. J. Mod. Phys. B 5,219 (1991).







Use coupling g
to induce a
transition to a
VBS insulator

...

Insulator
x=1/8



Proposed generalized phase diagram
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Conformal field theory:

Wilson-Fisher fixed point
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Wave oscillations of the
condensate (classical Gross-
Pitaevski equation)

> Quantum -
critical



Dilute Boltzmann gas of
particle and holes

> Quantum -
\ critical ,




CFT at T=0
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D. B. Haviland, Y. Liu, and A. M. Goldman,
Phys. Rev. Lett. 62, 2180 (1989)
T (K)

M. P. A. FiSher, PhyS Rev. Lett. 65, 923 (1990) FIG. 1. Evolution of the temperature dependence of the

sheet resistance R(7) with thickness for a Bi film deposited
onto Ge. Fewer than half of the traces actually acquired are
shown. Film thicknesses shown range from 4.36 to 74.27 A,




Density correlations in CFTs at T >0

Two-point density correlator, y(k,w)

— W

Kubo formula for conductivity o(w) = ]linf(l) 7 x(k,w)
For all CFT2s, at all Aw/kgT
4e? vk? 4e* Kv
= K 2 =
x(k, w) h = v2k2 —w? ’ olw] h —iw

where K is a universal number characterizing the CFT2 (the level
number), and v is the velocity of “light”.



Density correlations in CFTs at T >0

Two-point density correlator, y(k,w)

— W

Kubo formula for conductivity o(w) = ]linf(l) 7 x(k,w)
For all CFT3s, at hw > kT
4e? k? 4e?
X(k’,CU) — h K\/’Usz — : O'(CU) - T

where K is a universal number characterizing the CFT3, and v is
the velocity of “light”.



Density correlations in CFTs at T >0

Two-point density correlator, y(k,w)

(F,w)

—1W
Kubo formula for conductivity o(w) = ]lirr(l) —z X

However, for all CFT3s, at hw < kT, we have the Einstein re-
lation

9 4e?
a(w) = 4e DXC — T@l@g

Dk?
Dk? — jw

x(k,w) = 4de*x.

where the compressibility, y., and the diffusion constant D
obey

kBT hv2

X= Tho)2 2 kgT

with ©; and ©, universal numbers characteristic of the CFT3
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

O




Density correlations in CFTs at T >0

In CFT3s collisions are “phase” randomizing, and lead to
relaxation to local thermodynamic equilibrium. So there
is a crossover from collisionless behavior for Aiw > kgT', to
hydrodynamic behavior for hw < kgT'.

( 4 2
%K , hw > kgT
o(w) =
4e?
\ T@l@z , hw < kT

and in general we expect K # 0,0, (verified for Wilson-
Fisher fixed point).

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
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SU(N) SYM3 with N/ = 8 supersymmetry

Has a single dimensionful coupling constant, g, which flows
to a strong-coupling fixed point ¢ = ¢* in the infrared.

The CFT3 describing this fixed point resembles “critical spin
liquid” theories.

This CFT3 is the low energy limit of string theory on an
M2 brane. The AdS/CFT correspondence provides a dual
description using 11-dimensional supergravity on AdS, x S7.

The CFT3 has a global SO(8) R symmetry, and correlators
of the SO(8) charge density can be computed exactly in the
large N limit, even at T' > 0.



Collisionless to hydrodynamic crossover of SYM3

Iy (k,w)/k? | /Im\/k? — w?

1.

3w
AnT

P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007)



Collisionless to hydrodynamic crossover of SYM3
Imx(k,w)./'k.? -
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P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007)



Universal constants of SYM3

k’ T ( 2
Yo = 20, 1 K , hw > kT
(hU)Q h
. o(w) = 1
D = kBT@Q \ %@1@2 C hw < kT
! \/§N3/2 |
K =
3
o 3m2\V/2N3/2
1 p—
9
o 3
2 _ _—
82

C. Herzog, JHEP 0212, 026 (2002)
P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007)



Electromagnetic self-duality

e Unexpected result, K = ©,0-.

e This is traced to a four-dimensional electromagnetic
self-duality of the theory on AdS,. In the large N
limit, the SO(8) currents decouple into 28 U(1) cur-

rents with a Maxwell action for the U(1) gauge fields
o1l AdS4

e This special property is not expected for generic CFT'3s.

e Open question: Does K = ©:0, hold beyond the
N — oo limit 7 In other words, does this “self-
duality” survive in the full M theory.
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Dope the antiferomagnets with charge carriers of density x
by applying a chemical potential

Cay 9oNag 10CuO,Cl, Bi; 25r; gCag gDy 2CU,0,
S —
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For experimental applications, we must move away from the ideal CFT

A chemical potential w

* A magnetic field B

In the gravity dual theory, these
perturbations correspond to elec-
tric and magnetic charges on the

black hole

e.g.
s= [ drar [|<ar P+

—Z - Superﬂwd
- CFT
Commensurate -
| Mottinsulator @™ ~--- - - q
9e -~~~ g
p=70 -
/ Supér/ﬂ;ld
sEEL p=0
= 2 2 4
?|(V —idyy| — gl + S|l



In the hydrodynamic regime, hw < kp1', we can use classical prin-
ciples involving relaxation to local equilibrium to understand these
perturbations.

The variables entering the hydrodynamic theory are

e the external magnetic field F'*¥,

0 0 O
F# =10 0 B |,
0 —-B 0
e T'MY the stress energy tensor, e J#, the current,
e p, the local number density, e ¢, the local energy
density,
e P, the local pressure, e ut, the local velocity, and

® 0(, a universal conductivity, which is the single transport
co-efficient.

The dependence of €, P, g on T and v follows from simple scaling
arguments



Lorentz invariance and positivity of entropy production lead to the
hydrodynamic equations of motion and constitutive relations:
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Lorentz invariance and positivity of entropy production lead to the
hydrodynamic equations of motion and constitutive relations:

OpJ" = 0 “« Conservation laws/equations of motion
8,uTuV — F“VJV
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Lorentz invariance and positivity of entropy production lead to the
hydrodynamic equations of motion and constitutive relations:

o, Jt = 0
0,T"" = FHI],
™ = (e + P)utu” + Pg"”

JE =yt \

Constitutive relations which follow from Lorentz
transformation to moving frame
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Lorentz invariance and positivity of entropy production lead to the
hydrodynamic equations of motion and constitutive relations:

o, Jt = 0
0,T"" = FHI],
™ = (e + P)utu” + Pg"”

O, T
put + og(g"” + utu") [(—&/u + Fau?) + pt—

] T
Single dissipative' term allowed by requirement of

positive entropy production. There is only one
Independent transport co-efficient

JI«L
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For experimental applications, we must move away from the ideal CFT

A chemical potential n

* A magnetic field B

In the gravity dual theory, these
perturbations correspond to elec-
tric and magnetic charges on the

black hole

e.q.
S = /d2'rd'r [|(8T — )| + v

—Z B \ ‘Supe;'fl\uid\ R
 CFT
Commensurate -
| Mott insulator - ==
9e -~~~ g
p="0
" Superfluid
T - S p= 0
= vl 2 , U 14
(V —id)y| — gl + 5[]
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For experimental applications, we must move away from the ideal CFT

A chemical potential n

* A magnetic field B

e An iImpurity scattering rate
1/tim (Its T dependence
follows from scaling
arguments)

R ‘Superfluid-
\ p <0

Commensurate -

| Mottinsulator @w” -~ - - - - -

p=70

Superfluid
op >0

e.g.
. - 2
S:/d2’r‘d7' !|(8T—u)¢|2+v2|(V—iA)¢‘ —g|¢|2+V('f")I¢I2+%le4
V x A

A=B , V(r)=0

V(r)V(r') = Vipd®(r — ')



Lorentz invariance and positivity of entropy production lead to the
hydrodynamic equations of motion and constitutive relations:

oJt' = 0
o,IT"" = FH*J, + . (08 + utuy) T Y u
imp
T = (e + P)u*u” + Pg"”
v v A 8MT
JE = put +og(g" + utu?) | (—Oup+ Foaut) + W=
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From these relations, we obtained results for the transport co-efficients,
expressed in terms of a “cyclotron” frequency and damping:

2e B pv? B?y?
g T =0Q 9
c(e + P) c’(e + P)

We =—

Longitudinal conductivity

(w 44/ Timp) (w + ¥y + wZ /¥ + 4/ Timp)

(w =+ 7y + /Timp ) ? — w?

Ozx — 0Q

S.A. Hartnoll, P.K. Kovtun, M. Miller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)



From these relations, we obtained results for the transport co-efficients,
expressed in terms of a “cyclotron” frequency and damping:

2e B pv? B?y?
. T =0Q 9
c(e + P) c’(e + P)

We =—

Longitudinal conductivity

o W 1 Timp) (W + 17 + w3 /Y + 4/ Timp)
e (w17 + 1/ Timp)? — w2
4 2,.2,.2 1
— 00+ b as B — 0

(e + P) (—iw + 1/Timp)
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From these relations, we obtained results for the transport co-efficients,
expressed in terms of a “cyclotron” frequency and damping:

2e B pv? B?y?
g T =0Q 9
c(e + P) c’(e + P)

We =—

Hall conductivity

2epc ’72 + wg — 21yw + 2’7/7'imp
o = —
Y B | (WHiy+i/Timp)? — w2
4epv? 8e3p3vt
= B|og — + 5 —
e+ P)(1/Timp —tw) (e + P)?(1/Timp — tw)
as B — 0
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From these relations, we obtained results for the transport co-efficients,
expressed in terms of a “cyclotron” frequency and damping:

2e B pv? B?y?
a — 0
c(e + P) T=9 21 p)
Thermal conductivity
(BT [+ P\? TR/t 1 i)
@\ 4e2 kgTp (W2/v 4+ 1/Timp)? + w?

1 (et P\ [ v(@2/y + 1 rimp)
7Q ° kpTB (We /7 +1/Timp)? + W

We =—

Rzxx
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From these relations, we obtained results for the transport co-efficients,
expressed in terms of a “cyclotron” frequency and damping:

2e B pv? B?y?
9 — 0
c(e + P) T=9 21 p)
Thermal conductivity
k3T (e+ P\°
Regx = UQ(462)(]€BTP) —las B—0

1 (et P\ [ 1(@2/y + 1rimp)
7Q ° kpTB (We /7 +1/Timp)? + W

We =—
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From these relations, we obtained results for the transport co-efficients,
expressed in terms of a “cyclotron” frequency and damping:

2e B pv? B?y?

9 — 0
c(e + P) T=9 21 p)
Thermal conductivity

p > k%’T e+ P ’ (Wg/’Y)(wg/’Y+1/7'imp)
o 79\ 4e? ) \ksTp) | (W2/7+1/Timp)? + w2

1 5., (cle+P) i
ngBT( P ) —lasp—0

We =—
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From these relations, we obtained results for the transport co-efficients,
expressed in terms of a “cyclotron” frequency and damping:

~ 2eBpv? ~ B*?
T e+ P) 0 T et P

Nernst signal

o k_B e+ P wc/nmp
N=\ 2 ) \ksTp) | (W2/7+ 1/Timp)2 + w2

kB
— =43.0861V /K
2e uv/
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From these relations, we obtained results for the transport co-efficients,
expressed in terms of a “cyclotron” frequency and damping:

2e B pv? B?v?

T et+rP) ' T e+ P

Transverse thermoelectric co-efficient

_ 2 Timp \ - P2 4 PoPey p(kpT)? /20T,
( h )Oéa;y:q)sB(kBT)z( TT p> p-+ +P(_32 )° I/ 27 Tymp |
2ekp h CIDEJFP(/{BT)G + B p* (27 Timp / h)?

where

B = Bg¢o/(hw)? ;  p=7p/(lw)*.
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uv LSCO - Theory
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LSCO - Theor
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Similar to velocity estimates by
A.V. Balatsky and Z-X. Shen, Science 284, 1137 (1999).

S.A. Hartnoll, P.K. Kovtun, M. Miller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)



To the solvable supersymmetric, Yang-Mills theory CFT, we add
A chemical potential w

* A magnetic field B

After the AdS/CFT mapping, we obtain the Einstein-Maxwell
theory of a black hole with

* An electric charge
* A magnetic charge

The exact results are found to be in precise accord with
all hydrodynamic results presented earlier
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THEORETICAL PHYSICS

A black hole full of answers

Jan Zaanen

A facet of string theory, the currently favoured route to a ‘theory of
everything', might help to explain some properties of exotic matter phases —
such as some peculiarities of high-temperature superconductors.
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Conclusions

Condensed matter systems realize several interesting CFT 3s.
Collisionless-to-hydrodynamic crossover in CFT3s at T>0.

Exact solutions via black hole mapping have yielded first exact
results for transport co-efficients in interacting many-body
systems, and were valuable in determining general structure of
hydrodynamics.

Theory of VBS order and Nernst effect in curpates.



