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Quantum criticality of the onset of antiferromagnetism in a metal
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A convenient starting point: the “spin-fermion” model
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To explore the tull range of phases at strong coupling, it is useful

to replace the SDW order parameter ¢ by a fixed length field 7,
with 7% =

= /DcaDﬁé (1° — 1) exp (—8)
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Now ¢ is the tuning parameter across the quantum phase tran-
sition. This allows discussion of exotic phases in which there is
local antiferromagnetic order (and so a local gap in the fermion
spectrum), but no global order. Such phases require suppression
of ‘hedgehog’ tunneling events in n.




Write 11 = 2] 0,573, and transform fermions to a
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Write 11 = 2] 0,573, and transform fermions to a
“rotating reference frame”, quantizing spins
in the direction of the local antiferromagnetic order:
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The spin-fermion (or Hubbard) model can be written
exactly as a lattice gauge theory with a

SU( )SQXSU( )Spln U(l)charge

Invariance.
The SU(2),., is a gauge invariance,
while SU(2)gpin XU(1)charge is @ global symmetry
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Gapless U(l) photon phase with “topological” order
No long-range antiferromagnetism, but hedgehogs suppressed
(spacetime analog of monopole-free phase in pyrochlores)

(b)

.
Total area of 4 pockets =

1L (27%) x (hole density x).
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Leading approximation for
Green’s function is similar
(but not identical) to the YRZ
phenomenological form
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Gapless U(1) photon phase with “topological” order

No long-range antiferromagnetism, but hedgehogs suppressed
(spacetime analog of monopole-free phase in pyrochlores)

4 )

Total area of 4 pockets =

(27%) x (hole density ).

- J

| Phase is a fractionalized Fermi liquid,

{ previously proposed for Kondo lattice

models (and possibly found in
YthQ(SiO.95Geo.O5)2, J. Custers,
P. Gegenwart, C. Geibel, F. Steglich,
P. Coleman, and S. Paschen, Phys.
Rev. Lett. 104, 186402 (2010).)
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On the Reconstructed Fermi Surface in the Underdoped Cuprates

H.-B. Yang,! J. D. Ramaeu,! Z.-H. Pan,! G.D. Gu,! P. D. Johnson,! R. H. Claus,? D. G. Hinks,? and T. E. Kidd?

The Fermi surface topologies of underdoped samples the high-T¢ superconductor Bi2212 have been
measured with angle resolved photoemission. By examining thermally excited states above the
Fermi level, we show that the Fermi surfaces in the pseudogap phase of underdoped samples are
actually composed of fully enclosed hole pockets. The spectral weight of these pockets is vanishingly
small at the anti-ferromagnetic zone boundary, which creates the illusion of Fermi “arcs” in standard
photoemission measurements. The area of the pockets as measured in this study is consistent with
the doping level, and hence carrier density, of the samples measured. Furthermore, the shape and
area of the pockets is well reproduced by a phenomenological model of the pseudogap phase as a
spin liquid.
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Low energy fermions
at hot Spots k = ky:
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“Hot spot”

“Cold” Fermi surfaces
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Order parameter: L,

“Yukawa” coupling:

Ar.Abanov and A.V. Chubukov, Phys. Rev. Lett. 93,255702 (2004)
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Metal with
“large” Fermi
surface

(2) =0

Fermion dispersions: g1 = vy -k and s = vy - k




Metal with
hole|and
electron
pockets
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Fermion dispersions:
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Integrate out fermions and obtain an effective action for the
boson field ¢ alone. Because the fermions are gapless, this is
potentially dangerous, and will lead to non-local terms in the ¢
effective action. Hertz focused on only the simplest such non-
local term. However, there are an infinite number of non-local
terms at higher order, and these lead to a breakdown of the
Hertz theory in d = 2.

Ar.Abanov and A.V. Chubukov, Phys. Rev. Lett. 93,255702 (2004)



Hertz action.

Upon integrating the fermions out, the leading term in the ¢

effective action is —IM(q, w,)|3(q, w,)|?, where M(q,w,) is the
fermion polarizability. This is given by a simple fermion loop

diagram

which evaluates to

‘wn|/\d—2
(1)

[ .
(q’wn) 47T|V1 X V2|

We have dropped a frequency-independent, cutoff-dependent
constant which can absorbed into a redefinition of s. Notice also

that the factor of ( has cancelled.
Inserting this fermion polarizability in the effective action for ¢, we




obtain the Hertz action for the SDW transition:

(2)

Let us, for now, assume the validity of the Hertz Gaussian action,
and compute the leading correction to the electronic Green's
function. This is given by the following Feynman graph for the

electron self energy, 2. At zero momentum for the 1)1 fermion we

have

de, 1

21 [q° + v|en| [ [=iC(€n + wn) +v2-q]
(3)




Evaluation of the integrals shows that

1(0,wp) ~ fwn| 47D/

The most important case is d = 2, where we have

sgn(wp)\/ |wn| , d=2.

Strong coupling physics in d = 2

)\2

Zl O,wn =3
(0, 0n) T|val\/Y

The theory so far has the boson propagator

1
g% + v|w|

which scales with dynamic exponent z, = 2, and now a fermion
propagator
1

—iCw+ a|w|(d-D/2 yv.q

First note that for d < 3, the bare —iCw term is less important
than the contribution from the self energy at low frequencies. This

Y




indicates that ( is irrelevant in the critical theory, and we can set
( — 0. Fortunately, all the loop diagrams evaluated so far are
independent of (.

Setting ( = 0, we see that the fermion propagator scales with
dynamic exponent zr = 2/(d — 1). For d > 2, zr < z, and so at
small momenta the boson fluctuations have lower energy than the
fermion fluctuations. Thus it seems reasonable to assume that the
fermion fluctuations are not as singular, and we can focus on an

effective theory of the SDW order parameter ¢ alone. In other
words, the Hertz assumptions appear valid for d > 2.

However, in d = 2, we have zr = z;, = 2. Thus fermionic and
bosonic fluctuations are equally important, and it is not appropriate
to integrate the fermions out at an initial stage. We have to return
to the original theory of coupled bosons and fermions. This turns
out to be strongly coupled, and exhibits complex critical behavior.




Ly = é (C@T —z’vf-

1o

Order parameter: L,

“Yukawa” coupling:

Pertorm RG on both fermions and ¢,
using local field theory above.

M. A. Metlitski and S. Sachdev,
Physical Review B 82, 075127 (2010)




In principle, the RG analysis can be organized an expansion in
1/N, where N is the number of hot-spots. Apart from the field
scale renormalizations, and the dynamic exponent z, the only
coupling constants are the velocity ratio a = v, /vy, and the boson
quartic coupling u. We assume s has been tuned to reach the
critical point, and the scaling limit has ( — 0 (characteristic of all
non-Fermi liquid fixed points) so that the boson-fermion coupling
A can be absorbed into the fermion field scale.

At two-loop order, the 1/N expansion is well-behaved, and we can
determine consistent RG flow equations. However, at higher loops
we find corrections to the renormalizations which require
summation of all planar graphs even at the leading order in 1/N,
and the 1/N expansion appears to be organized as a genus
expansion of random surfaces. But even this genus expansion
breaks down in the renormalization of u. In the following, we just
describe the two loop results.




The main RG improved two-loop results are:

» The position of the Fermi surface renormalizes to

12

Py = —W—NPX log(1/|px|)

V1 Vo

Bare Fermi surface




The main RG improved two-loop results are:

» The position of the Fermi surface renormalizes to

12
P TN

px log(1/]px|)

Dressed Fermi surface
Ar.Abanov and A.V. Chubukov, Phys. Rev. Lett. 93,255702 (2004)




The main RG improved two-loop results are:

» The position of the Fermi surface renormalizes to

12

Py = —W—NPX log(1/|px|)

» The fermion self-energy at the hot spot is,
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The main RG improved two-loop results are:

» The position of the Fermi surface renormalizes to

12

Py = —W—NPX log(1/|px|)

» The fermion self-energy at the hot spot is,

3 41

213 log m) |w|1/25gn(w),

» Along the Fermi surface away from the hot spot, the
quasiparticle residue and Fermi velocity behave as,

) 8 —1/2
F ~ €Xp T2 /3 P|

2(w,p=10)~ —iexp <




» The characteristic frequency of the bosonic spectrum is

48 1
W ~ c72 exp ( Iog3 ﬁ) :

T2 N3

and the the bosonic propagator obeys
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(d-wave pairing in the theory of hotspotsJ

Hot spots have
strong instability to
d-wave palring near
SDW critical point.

T'his instability is
stronger than the
BCS instability of a
Fermi liquid.

Pairing order parameter: £*” (@b%a@b% g — 5,105 5)



At leading order, the pairing vertex is enhanced by the factor

o] 5 (1
14 ] — .
r(1+a2) 0 <w>

Note that this is not suppressed by a factor of 1/N. It is not clear how to improve
this using the RG. However, we can note that the coupling « is of order unity, and
so the pairing is enhanced as the frequency crosses the Fermi energy.

We also note that in the two-loop RG, the coupling o = v,, /v, has a flow towards

weak coupling
do 12 a?

dl — 7N (1 + a?)

but it not appropriate to simply insert the integrated value from this flow into the
pairing enhancement.




Emergent Pseudospin symmetry

Continuum theory of hotspots in invariant under:

¢ wé
(i )-v ()

where U* are arbitrary SU(2) matrices which can be
different on different hotspots /.




d-wave Cooper pairing instability in
particle-particle channel




Bond density wave (with local Ising-nematic
order) instability in particle-hole channel




Recall d-wave pairing
instability in the
particle-particle channel

This had the enhancement
factor

Pairing order parameter:




d-wave pairing has a
partner instability in the
particle-hole channel

This has the enhancement
factor

o 5 (1
1 l —
3m(1 + a?) o5 <w>

Density-wave order parameter:
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Single ordering wavevector Q:

<CL—Q/2,aCk‘|—Q/27a> —
®(cos ky — cos k)
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“Bond density”
measures amplitude
for electrons to be

in spin-singlet

valence bond:
VBS order

No modulations on sites. Modulated bond-density
wave with local Ising-nematic ordering:

<CL_Q/2’aCk_|_Q/2,a> = ®(cosk, — cosky)




“Bond density”
measures amplitude
for electrons to be

in spin-singlet

valence bond:
VBS order
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No modulations on sites. Modulated bond-density
wave with local Ising-nematic ordering:

<CL_Q/2’aCk_|_Q/2,a> = ®(cosk, — cosky)




STM measurements of Z(r), the energy asymmetry

in density of states in BisSroCaCusOga .
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STM measurements of Z(r), the energy asymmetry
in density of states in BiQSrgCaCu208+5.

M. J. Lawler, K. Fujita,
Jhinhwan Lee,
A. R. Schmidt,
Y. Kohsaka, Chung Koo
Kim, H. Eisaki,
S. Uchida, J. C. Dayvis,
J. P. Sethna, and
| Eun-Ah Kim,
Nature 466, 347 (2010).

Strong anisotropy of
electronic states between

x and y directions:
Electronic
“Ising-nematic” order




Conclusions

Presented global phase diagram of a SU(2) gauge theory for
spin-density wave (SDW) ordering in metals.

Theory has a phase with no long-range SDW order but
with “hedgehogs” suppressed. This phase has pocket Fermi
surfaces similar to recent photoemission observations.

Then we discussed the field theory for a direct transition
between two Fermi liquids: from a large Fermi surface to
Fermi pockets. This theory flows to strong coupling in two

spatial dimensions.

We found a strong instability to d-wave pairing near the
critical point. The critical theory also had emergent pseudospin
symmetries, which implied an additional instability to bond-
ordering with a local Ising-nematic character.




