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A convenient starting point: the “spin-fermion” model
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Write �n = z∗α�σαβzβ , and transform fermions to a
“rotating reference frame”, quantizing spins

in the direction of the local antiferromagnetic order:
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The spin-fermion (or Hubbard) model can be written

exactly as a lattice gauge theory with a

SU(2)s;g×SU(2)spin×U(1)charge

invariance.

The SU(2)s;g is a gauge invariance,

while SU(2)spin×U(1)charge is a global symmetry

Write �n = z∗α�σαβzβ , and transform fermions to a
“rotating reference frame”, quantizing spins

in the direction of the local antiferromagnetic order:
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Gapless U(1) photon phase with “topological” order
No long-range antiferromagnetism, but hedgehogs suppressed 

(spacetime analog of monopole-free phase in pyrochlores)

Total area of 4 pockets =
(2π2)× (hole density x).

Phase is a fractionalized Fermi liquid,
previously proposed for Kondo lattice

models (and possibly found in
YbRh2(Si0.95Ge0.05)2, J. Custers,

P. Gegenwart, C. Geibel, F. Steglich,
P. Coleman, and S. Paschen, Phys.
Rev. Lett. 104, 186402 (2010).)

Leading approximation for 
Green’s function is similar 

(but not identical) to the YRZ 
phenomenological form
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FIG. 1. (a) Spectra recorded at 1.2◦ intervals near the end
of the arc for the 60 K sample. The sample temperature is
140 K and the spectra are shown after analysis to reduce the
effects of broadening and after dividing by the Fermi distribu-
tion function. (b) Schematic showing points analyzed in the
measured spectra as indicated in the text. (c) Pseudo-pocket
determined for the 60 K sample. The red solid circles indicate
the measured Fermi surface crossings corresponding to point
1 in the schematic, the black crosses indicate the measured
extremity of the dispersion corresponding to point 2 and the
open blue circles represent the “ghost” Fermi surface corre-
sponding to point 3. The green line indicates the large LDA
Fermi surface.

tra are shown after analysis using the Lucy-Richardson
(LR) deconvolution approach [16] to reduce the effects
of the experimental resolution and after division by the
appropriate temperature dependent Fermi function. The
latter approach allows a more accurate determination of
the Fermi surface crossings. The spectra in Fig. 1(a)
contain two experimental observations as indicated in the
schematic in Fig. 1(b), the directly measured Fermi sur-
face crossing, point 1, and the point at which the disper-
sion comes to an abrupt halt, point 2. We associate the
latter point with a gap in the spectral function reflecting
the scattering of the photohole in the underlying spin liq-
uid. As noted earlier, several calculations indicate that
the formation of a Fermi hole pocket reflecting a particle-
hole asymmetry in binding energy is derived from this
scattering [5, 6]. Alternative models that recognize the
strong correlations in the system can also produce pock-
ets [7, 17]. Within the YRZ ansatz, the pocket is formed
by two band crossings, points 1 and 3 in the schematic,
symmetric about the zone point associated with the bot-
tom of the gap derived from the scattering, point 2. Thus
if we observe one Fermi surface crossing, point 1, and
the bottom of the gap, point 2, we can in principle de-
termine the other side of the pocket, the “ghost” Fermi
surface, point 3, as indicated in Fig. 1(c). The Fermi
pocket derived in this manner is compared in the fig-
ure with the full Fermi surface traditionally assumed in
ARPES studies. The deviation between the traditional

LDA Fermi surface and that determined in the present
study becomes most evident near the end of the“arc”.
It is important to note that the hole pocket determined
in this manner is clearly asymmetric with respect to the
magnetic zone boundary, ruling out any pockets gener-
ated by scattering mechanisms simply associated with a
Q(π,π) vector. The “ghost” portion of the Fermi surface
is, however, consistent with models showing a surface of
zeros in the Green’s function running along the magnetic
zone boundary [6, 18] at the chemical potential. Under
the condition, G(�k,ω) = 0, the spectral weight measur-
able by photoemission is vanishingly small because the
spectral function is defined by A(�k,ω) = −ImG(�k,ω).
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FIG. 2. (a) The pseudo-pockets determined for three different
doping levels. The black data corresponds to the Tc = 65 K
sample, the blue data corresponds to the Tc = 45 K sample
and the red data corresponds to the non-superconducting Tc

= 0 K sample. The area of the “pockets” xARPES scales with
the nominal of doping level xn, as shown in the inset. (b) The
Fermi pockets derived from YRZ ansatz with different doping
level.

Having determined the approximate shape and size of
the pocket we can calculate the associated hole density
for a given sample. Assuming the area inside the mag-
netic zone boundary corresponds to one electron at half
filling, the pocket area corresponds to a hole carrier den-
sity of 0.15, higher than the doping level determined from
the measured TC alone. However the measured area is
in reasonably good agreement with the area bounded by
the locus of superconducting Bogoliubov band minima
kB(E) extracted from SI-STS studies of a BSSCO sample
with a similar doping level [19]. As such the combination
of the two experiments raises obvious questions. Does the
pocket area really scale with the doping level and how is
that consistent with earlier studies suggesting the “arc”
length is temperature dependent with a length propor-
tional to T/T ∗ [20] (Here T ∗ represents the doping depen-
dent pseudogap temperature scale.) In attempting to an-
swer these questions we show in Figure 2(a) a comparison
of the Fermi surfaces obtained using the present approach
for the 65 K sample, a Ca doped sample (TC = 45 K) and
an oxygen-deficient non-superconducting sample (TC =
0 K). It is clear from Fig. 2(a) that reducing the doping
level into the highly underdoped regime results in a more
noticeable deviation from the “LDA” Fermi surface. Fur-
ther, while the measured areas of the different pockets,
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The Fermi surface topologies of underdoped samples the high-TC superconductor Bi2212 have been
measured with angle resolved photoemission. By examining thermally excited states above the
Fermi level, we show that the Fermi surfaces in the pseudogap phase of underdoped samples are
actually composed of fully enclosed hole pockets. The spectral weight of these pockets is vanishingly
small at the anti-ferromagnetic zone boundary, which creates the illusion of Fermi “arcs” in standard
photoemission measurements. The area of the pockets as measured in this study is consistent with
the doping level, and hence carrier density, of the samples measured. Furthermore, the shape and
area of the pockets is well reproduced by a phenomenological model of the pseudogap phase as a
spin liquid.

Understanding the pseudogap regime in the high TC

superconducting cuprates is thought to be the key to
understanding the high TC phenomenon in general [1].
An important component of that understanding will be
the determination of the nature of the low lying normal
state electronic excitations that evolve into the super-
conducting state. It is therefore critically important to
know the exact nature of the Fermi surface associated
with these materials. Photoemission studies of the pseu-
dogap regime reveal gaps in the spectral function in di-
rections corresponding to the copper-oxygen bonds and
a Fermi surface that seemingly consists of disconnected
arcs falling on the surface defined within the framework
of a weakly interacting Fermi liquid. A number of dif-
ferent theories have attempted to explain these phenom-
ena in terms of competing orders whereby the full Fermi
surface undergoes a reconstruction reflecting the com-
petition [3, 4]. An alternative approach recognizes that
the superconducting cuprates evolve with doping from a
Mott insulating state with no low energy excitations to
a new state exhibiting properties characteristic of both
insulators and strongly correlated metals.

Several theories have been proposed to describe the
cuprates from the latter perspective [5–7]. One such ap-
proach is represented by the so-called YRZ ansatz [6],
which, based on the doped RVB spin liquid concept [8],
has been shown to successfully explain a range of ex-
perimental observations in the underdoped regime [9–
12]. The model is characterized by two phenomena, a
pseudogap that differs in origin from the superconduct-
ing gap and hole-pockets that satisfy the Luttinger sum
rule for a Fermi surface defined by both the poles and ze-
ros of the Green’s function at the chemical potential [13].
The pockets manifest themselves along part of the Fermi
surface as an “arc” possessing finite spectral weight cor-
responding to the poles of the Green’s function as in a
conventional metal. The remaining“ghost” component of
the Fermi surface is defined by the zeros of the Green’s
function and therefore posses no spectral weight to be
directly observed. Importantly, the zeros of the Green’s
function at the chemical potential coincide with the mag-

netic zone boundary associated with the underlying an-
tiferromagnetic order of the Mott insulating state and
therefore restrict the pockets to lying on only one side of
this line. The model further predicts that the arc and
ghost portions of the Fermi surface are smoothly con-
nected to from pockets.
Several theoretical studies indicate that within this

framework the pockets have an area that scales with the
doping [6, 10]. Recent photoemission studies have indeed
provided some indication that the pseudogap regime is
characterized by hole pockets centered in the nodal di-
rection [14, 15]. In the present study, applying advanced
analysis techniques [14, 16] we are able to demonstrate for
the first time that the Fermi surface of the underdoped
cuprates in the normal state is indeed characterized by
hole pockets with an area proportional to the doping level
and a Fermiology as described above. These measure-
ments, well fit by the YRZ Green’s function, show that
the Fermi surface and associated properties of high-TC

cuprate superconductors need not rely on the existence
of exotic phenomena such as disconnected Fermi“arcs”
for quantitative explanation.
The photoemission studies reported in this paper were

carried out on underdoped cuprate samples, both Ca
doped and oxygen deficient. The Ca-rich crystal was
grown from a rod with Bi2.1Sr1.4Ca1.5Cu2O8+δ compo-
sition using an arc-image furnace with a flowing 20%
O2/Ar gas mixture. The maximum TC was 80(1) K.
The sample was then annealed at 700 ◦C giving a 45 K
TC with a transition width of 2 K. The oxygen deficient
Bi2Sr2CaCu2O8+δ crystals were produced by annealing
optimally-doped Bi-2212 crystals, at 450 ◦C to 650 ◦C
for 3 ∼ 15 days. The spectra shown in this paper were
all recorded on beamline U13UB at the NSLS using a
Scienta SES2002 electron spectrometer. Each spectrum
was typically recorded for a period of five to six hours
in the pulse-counting mode with an energy and angular
resolution of 15 meV and 0.1◦ respectively.
The upper panel of Figure 1 shows photoemission spec-

tra obtained near the end of the measured “Fermi arc” for
an underdoped Bi2212 (TC = 65 K) sample. The spec-
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TC with a transition width of 2 K. The oxygen deficient
Bi2Sr2CaCu2O8+δ crystals were produced by annealing
optimally-doped Bi-2212 crystals, at 450 ◦C to 650 ◦C
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all recorded on beamline U13UB at the NSLS using a
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Hertz theory

Integrate out fermions and obtain an effective action for the

boson field �ϕ alone. Because the fermions are gapless, this is

potentially dangerous, and will lead to non-local terms in the �ϕ
effective action. Hertz focused on only the simplest such non-

local term. However, there are an infinite number of non-local

terms at higher order, and these lead to a breakdown of the

Hertz theory in d = 2.

Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, 255702 (2004).



Hertz action.

Upon integrating the fermions out, the leading term in the �ϕ
effective action is −Π(q,ωn)|�ϕ(q,ωn)|2, where Π(q,ωn) is the
fermion polarizability. This is given by a simple fermion loop
diagram

which evaluates to

Π(q,ωn) = − |ωn|Λd−2

4π|v1 × v2|
. (1)

We have dropped a frequency-independent, cutoff-dependent
constant which can absorbed into a redefinition of s. Notice also
that the factor of ζ has cancelled.
Inserting this fermion polarizability in the effective action for �ϕ, we



obtain the Hertz action for the SDW transition:

SH =

�
ddk

(2π)d
T
�

ωn

1

2

�
k2 + γ|ωn|+ s

�
|�ϕ(k ,ωn)|2

+
u

4

�
ddxdτ

�
�ϕ2

(x , τ)
�2

. (2)

Let us, for now, assume the validity of the Hertz Gaussian action,

and compute the leading correction to the electronic Green’s

function. This is given by the following Feynman graph for the

electron self energy, Σ. At zero momentum for the ψ1 fermion we

have

Σ1(0,ωn) = λ2
�

ddq

(2π)d

�
d�n
2π

1

[q2 + γ|�n| ] [−iζ(�n + ωn) + v2 · q ]
.

(3)



Evaluation of the integrals shows that

Σ1(0,ωn) ∼ |ωn|(d−1)/2 (4)

The most important case is d = 2, where we have

Σ1(0,ωn) = i
λ2

π|v2|
√
γ
sgn(ωn)

�
|ωn| , d = 2. (5)

Strong coupling physics in d = 2

The theory so far has the boson propagator

∼ 1

q2 + γ|ω|

which scales with dynamic exponent zb = 2, and now a fermion
propagator

∼ 1

−iζω + c1|ω|(d−1)/2 + v · q
.

First note that for d < 3, the bare −iζω term is less important
than the contribution from the self energy at low frequencies. This



indicates that ζ is irrelevant in the critical theory, and we can set

ζ → 0. Fortunately, all the loop diagrams evaluated so far are

independent of ζ.

Setting ζ = 0, we see that the fermion propagator scales with

dynamic exponent zf = 2/(d − 1). For d > 2, zf < zb, and so at

small momenta the boson fluctuations have lower energy than the

fermion fluctuations. Thus it seems reasonable to assume that the

fermion fluctuations are not as singular, and we can focus on an

effective theory of the SDW order parameter �ϕ alone. In other

words, the Hertz assumptions appear valid for d > 2.

However, in d = 2, we have zf = zb = 2. Thus fermionic and

bosonic fluctuations are equally important, and it is not appropriate

to integrate the fermions out at an initial stage. We have to return

to the original theory of coupled bosons and fermions. This turns

out to be strongly coupled, and exhibits complex critical behavior.
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Perform RG on both fermions and �ϕ,
using local field theory above.

M. A. Metlitski and S. Sachdev,
Physical Review B 82, 075127 (2010)



In principle, the RG analysis can be organized an expansion in

1/N, where N is the number of hot-spots. Apart from the field

scale renormalizations, and the dynamic exponent z , the only

coupling constants are the velocity ratio α = vy/vx , and the boson

quartic coupling u. We assume s has been tuned to reach the

critical point, and the scaling limit has ζ → 0 (characteristic of all

non-Fermi liquid fixed points) so that the boson-fermion coupling

λ can be absorbed into the fermion field scale.

At two-loop order, the 1/N expansion is well-behaved, and we can

determine consistent RG flow equations. However, at higher loops

we find corrections to the renormalizations which require

summation of all planar graphs even at the leading order in 1/N,

and the 1/N expansion appears to be organized as a genus

expansion of random surfaces. But even this genus expansion

breaks down in the renormalization of u. In the following, we just

describe the two loop results.



The main RG improved two-loop results are:

� The position of the Fermi surface renormalizes to

py = − 12

πN
px log(1/|px |)

� The fermion self-energy at the hot spot is,

Σ(ω,�p = 0) ∼ −i exp

�
− 3

π2N3
log3

1

|ω|

�
|ω|1/2sgn(ω),

� Along the Fermi surface away from the hot spot, the
quasiparticle residue and Fermi velocity behave as,

vF ∼ exp

�
48

π2N3
log3

1

p�

�
p�, Z ∼

�
log

1

p�

�−1/2

p�

v1 v2

Bare Fermi surface
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� The characteristic frequency of the bosonic spectrum is

ω ∼ �q2 exp

�
48

π2N3
log3

1

|�q|

�
,

and the the bosonic propagator obeys

D−1(ω,�q = 0) ∼ |ω|1−
1
N exp

�
6

π2N4
log3

1

|ω|

��
log

1

|ω|

�−1/3

D−1(ω = 0,�q) ∼ |�q|2 exp
�

48

π2N3
log3

1

|�q|

�
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Hot spots have

strong instability to

d-wave pairing near

SDW critical point.

This instability is

stronger than the

BCS instability of a

Fermi liquid.

Pairing order parameter: εαβ
�
ψ3
1αψ

1
1β − ψ3

2αψ
1
2β

�

d-wave pairing in the theory of hotspots

ψ3
1

ψ3
2



(a)

(b)

3

3

At leading order, the pairing vertex is enhanced by the factor

1 +
α

π(1 + α2)
log

2

�
1

ω

�
.

Note that this is not suppressed by a factor of 1/N . It is not clear how to improve

this using the RG. However, we can note that the coupling α is of order unity, and

so the pairing is enhanced as the frequency crosses the Fermi energy.

We also note that in the two-loop RG, the coupling α = vy/vx has a flow towards

weak coupling

dα

d�
= − 12

πN

α2

(1 + α2)

but it not appropriate to simply insert the integrated value from this flow into the

pairing enhancement.



Emergent Pseudospin symmetry

Continuum theory of hotspots in invariant under:

�
ψ�
↑

ψ�†
↓

�
→ U �

�
ψ�
↑

ψ�†
↓

�

where U � are arbitrary SU(2) matrices which can be
different on different hotspots �.
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Pairing order parameter:

εαβ
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2 Recall d-wave pairing

instability in the
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Density-wave order parameter:

�
ψ3†
1αψ
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1α − ψ3†

2αψ
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�

d-wave pairing has a
partner instability in the
particle-hole channel

This has the enhancement
factor
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Single ordering wavevector Q:�
c†k−Q/2,αck+Q/2,α

�
=

Φ(cos kx − cos ky)
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Strong anisotropy of 
electronic states between 

x and y directions:
Electronic 

“Ising-nematic” order
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Presented global phase diagram of a SU(2) gauge theory for 
spin-density wave (SDW) ordering in metals. 

Theory has a phase with no long-range SDW order but
with “hedgehogs” suppressed. This phase has pocket Fermi 

surfaces similar to recent photoemission observations.

Then we discussed the field theory for a direct transition 
between two Fermi liquids: from a large Fermi surface to 
Fermi pockets. This theory flows to strong coupling in two 

spatial dimensions. 

We found a strong instability to d-wave pairing near the 
critical point. The critical theory also had emergent pseudospin 

symmetries, which implied an additional instability to bond-
ordering with a local Ising-nematic character.

Conclusions


