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A quasiparticle is an “excited lump” in the many-
electron state which responds just like an ordinary 
particle. 

R.D. Mattuck
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The quasiparticle idea is the key reason for the many 
successes of quantum condensed matter physics:

 Fermi liquid theory of metals, insulators, semiconductors

 Theory of superconductivity (pairing of quasiparticles)

 Theory of disordered metals and insulators (diffusion and 
localization of quasiparticles)

 Theory of metals in one dimension (collective modes as 
quasiparticles)

 Theory of the fractional quantum Hall effect (quasiparticles 
which are `fractions’ of an electron)

Quantum matter with quasiparticles:



SM

FL

Figure: K. Fujita and J. C. Seamus Davisp (hole/Cu)

Strange metal
Entangled 

electrons lead to 
“strange” 

temperature 
dependence of 
resistivity and 

other properties

Quantum matter without quasiparticles



“Strange”,
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or “Incoherent”,

metal has a resistivity, ⇢, which obeys

⇢ ⇠ T ,

and

⇢ � h/e2

(in two dimensions),

where h/e2 is the quantum unit of resistance.
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• Note: The electron liquid in one dimension and the fractional
quantum Hall state both have quasiparticles; however, the quasi-
particles do not have the same quantum numbers as an electron.

Quantum matter with quasiparticles:

• Quasiparticles are additive excitations:

The low-lying excitations of the many-body system

can be identified as a set {n↵} of quasiparticles with

energy "↵

E =

P
↵ n↵"↵ +

P
↵,� F↵�n↵n� + . . .

In a lattice system ofN sites, this parameterizes the energy

of ⇠ e↵N states in terms of poly(N) numbers.



Quantum matter with quasiparticles:

• Quasiparticles eventually collide with each other. Such

collisions eventually leads to thermal equilibration in a

chaotic quantum state, but the equilibration takes a long

time. In a Fermi liquid, this time diverges as

⌧eq ⇠ ~EF

(kBT )2
, as T ! 0,

where EF is the Fermi energy.



A simple model of a metal with quasiparticles

Pick a set of random positions



Place electrons randomly on some sites
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H =
1

(N)1/2

NX

i,j=1

tijc
†
i cj + . . .

cicj + cjci = 0 , cic
†
j + c†jci = �ij

1

N

X

i

c†i ci = Q

Fermions occupying the eigenstates of a 
N x N random matrix

tij are independent random variables with tij = 0 and |tij |2 = t2

A simple model of a metal with quasiparticles



A simple model of a metal with quasiparticles

!

Let "↵ be the eigenvalues of the matrix tij/
p
N .

The fermions will occupy the lowest NQ eigen-

values, upto the Fermi energy EF . The density

of states is ⇢(!) = (1/N)

P
↵ �(! � "↵).

EF

⇢(!)
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The Sachdev-Ye-Kitaev (SYK) model
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This describes both a strange metal and a black hole!

The SYK model



A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)

S. Sachdev and J. Ye, PRL 70, 3339 (1993)

(See also: the “2-Body Random Ensemble” in nuclear physics; did not obtain the large N limit;
T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Rev. Mod. Phys. 53, 385 (1981))

The SYK model

H =
1

(2N)3/2

NX

i,j,k,`=1

Uij;k` c
†
i c

†
jckc` � µ

X

i

c†i ci

cicj + cjci = 0 , cic
†
j + c†jci = �ij

Q =
1

N

X

i

c†i ci

Uij;k` are independent random variables with Uij;k` = 0 and |Uij;k`|2 = U2

N ! 1 yields critical strange metal.



GPS:   A. Georges, O. Parcollet, and S. Sachdev, 
PRB 63, 134406 (2001)

Many-body

level spacing ⇠
2

�N
= e�N ln 2

W. Fu and S. Sachdev, PRB 94, 035135 (2016)

Non-quasiparticle

excitations with

spacing ⇠ e�Ns0

There are 2

N
many body levels

with energy E, which do not

admit a quasiparticle

decomposition. Shown are all

values of E for a single cluster of

size N = 12. The T ! 0 state

has an entropy SGPS = Ns0
with

s0 =

G

⇡
+

ln(2)

4

= 0.464848 . . .

< ln 2

where G is Catalan’s constant,

for the half-filled case Q = 1/2.
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No quasiparticles !

E 6=
P

↵ n↵"↵
+

P
↵,� F↵�n↵n� + . . .
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• Low energy, many-body density of states

⇢(E) ⇠ eNs0
sinh(

p
2(E � E0)N�)

• Low temperature entropy S = Ns0 +N�T + . . ..

• T = 0 fermion Green’s function is incoherent: G(⌧) ⇠
⌧�1/2

at large ⌧ . (Fermi liquids with quasiparticles have

the coherent: G(⌧) ⇠ 1/⌧)

• T > 0 Green’s function has conformal invariance

G ⇠ (T/ sin(⇡kBT ⌧/~))1/2

A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001)
D. Stanford and E. Witten, 1703.04612

A. M. Garica-Garcia, J.J.M. Verbaarschot, 1701.06593
D. Bagrets, A. Altland, and A. Kamenev, 1607.00694   
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A. Kitaev, unpublished
J. Maldacena and D. Stanford, 1604.07818
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A. Georges and O. Parcollet PRB 59, 5341 (1999)

The SYK model
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• Low energy, many-body density of states

⇢(E) ⇠ eNs0
sinh(

p
2(E � E0)N�)

• Low temperature entropy S = Ns0 +N�T + . . ..

• T = 0 fermion Green’s function is incoherent: G(⌧) ⇠
⌧�1/2

at large ⌧ . (Fermi liquids with quasiparticles have

the coherent: G(⌧) ⇠ 1/⌧)

• T > 0 Green’s function has conformal invariance

G ⇠ (T/ sin(⇡kBT ⌧/~))1/2

A. Eberlein, V. Kasper, S. Sachdev, and J. Steinberg, arXiv:1706.07803

The SYK model

• The last property indicates ⌧eq ⇠ ~/(kBT ), and this

has been found in a recent numerical study.



• If there are no quasiparticles, then

E 6=
X

↵

n↵"↵ +

X

↵,�

F↵�n↵n� + . . .

• If there are no quasiparticles, then

⌧eq = #

~
kBT

• Systems without quasiparticles are the fastest possible in reaching local

equilibrium, and all many-body quantum systems obey, as T ! 0

⌧eq > C
~

kBT
.

– In Fermi liquids ⌧eq ⇠ 1/T 2
, and so the bound is obeyed as T ! 0.

– This bound rules out quantum systems with e.g. ⌧eq ⇠ ~/(JkBT )1/2.
– There is no bound in classical mechanics (~ ! 0). By cranking up

frequencies, we can attain equilibrium as quickly as we desire.

                S. Sachdev, 
Quantum Phase Transitions, 

Cambridge (1999)

Quantum matter without quasiparticles:
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A strongly correlated metal built from Sachdev-Ye-Kitaev models

Xue-Yang Song,1, 2 Chao-Ming Jian,2, 3 and Leon Balents2

1International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
2Kavli Institute of Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

3Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA
(Dated: May 23, 2017)

Prominent systems like the high-Tc cuprates and heavy fermions display intriguing features going beyond
the quasiparticle description. The Sachdev-Ye-Kitaev(SYK) model describes a 0 + 1D quantum cluster with
random all-to-all four-fermion interactions among N Fermion modes which becomes exactly solvable as N !
1, exhibiting a zero-dimensional non-Fermi liquid with emergent conformal symmetry and complete absence
of quasi-particles. Here we study a lattice of complex-fermion SYK dots with random inter-site quadratic
hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a
heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature
Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in
temperature resistivity in the incoherent regime, and a Lorentz ratio L ⌘ ⇢T varies between two universal values
as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated
metal.

Introduction - Strongly correlated metals comprise an en-
during puzzle at the heart of condensed matter physics. Com-
monly a highly renormalized heavy Fermi liquid occurs be-
low a small coherence scale, while at higher temperatures a
broad incoherent regime pertains in which quasi-particle de-
scription fails[1–9]. Despite the ubiquity of this phenomenol-
ogy, strong correlations and quantum fluctuations make it
challenging to study. The exactly soluble SYK models pro-
vide a powerful framework to study such physics. The most-
studied SYK4 model, a 0 + 1D quantum cluster of N Ma-
jorana fermion modes with random all-to-all four-fermion
interactions[10–18] has been generalized to SYKq models
with q-fermion interactions. Subsequent works[19, 20] ex-
tended the SYK model to higher spatial dimensions by cou-
pling a lattice of SYK4 quantum clusters by additional four-
fermion “pair hopping” interactions. They obtained electrical
and thermal conductivities completely governed by di↵usive
modes and nearly temperature-independent behavior owing to
the identical scaling of the inter-dot and intra-dot couplings.

Here, we take one step closer to realism by considering a
lattice of complex-fermion SYK clusters with SYK4 intra-
cluster interaction of strength U0 and random inter-cluster
“SYK2” two-fermion hopping of strength t0[21–26]. Un-
like the previous higher dimensional SYK models where lo-
cal quantum criticality governs the entire low temperature
physics, here as we vary the temperature, two distinctive
metallic behaviors appear, resembling the previously men-
tioned heavy fermion systems. We assume t0 ⌧ U0, which
implies strong interactions, and focus on the correlated regime
T ⌧ U0. We show the system has a coherence temperature

scale Ec ⌘ t2
0/U0[21, 27, 28] between a heavy Fermi liquid

and an incoherent metal. For T < Ec, the SYK2 induces a
Fermi liquid, which is however highly renormalized by the
strong interactions. For T > Ec, the system enters the incoher-
ent metal regime and the resistivity ⇢ depends linearly on tem-
perature. These results are strikingly similar to those of Par-
collet and Georges[29], who studied a variant SYK model ob-
tained in a double limit of infinite dimension and large N. Our
model is simpler, and does not require infinite dimensions. We
also obtain further results on the thermal conductivity , en-
tropy density and Lorentz ratio[30, 31] in this crossover. This
work bridges traditional Fermi liquid theory and the hydrody-
namical description of an incoherent metallic system.

SYK model and Imaginary-time formulation - We consider
a d-dimensional array of quantum dots, each with N species
of fermions labeled by i, j, k · · · ,

H =
X

x

X

i< j,k<l

Ui jkl,xc†ixc†jxckxclx +
X

hxx0i

X

i, j

ti j,xx0c
†
i,xc j,x0 (1)

where Ui jkl,x = U⇤kli j,x and ti j,xx0 = t⇤ji,x0x are random zero mean
complex variables drawn from Gaussian distribution whose
variances |Ui jkl,x|2 = 2U2

0/N
3 and |ti j,x,x0 |2 = t2

0/N.
In the imaginary time formalism, one studies the partition

function Z = Tr e��(H�µN), with N = Pi,x c†i,xci,x, written as
a path integral over Grassman fields cix⌧, c̄ix⌧. Owing to the
self-averaging established for the SYK model at large N, it is
su�cient to study Z̄ =

R
[dc̄][dc]e�S c , with (repeated species

indices are summed over)

S c =
X

x

Z �

0
d⌧ c̄ix⌧(@⌧ � µ)cix⌧ �

Z �

0
d⌧1d⌧2

hX

x

U2
0

4N3 c̄ix⌧1 c̄ jx⌧1 ckx⌧1 clx⌧1 c̄lx⌧2 c̄kx⌧2 c jx⌧2 cix⌧2 +
X

hxx0i

t2
0

N
c̄ix⌧1 c jx0⌧1 c̄ jx0⌧2 cix⌧2

i
. (2)

The basic features can be determined by a simple power- counting. Considering for simplicity µ = 0, starting from
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A toy exactly soluble model 
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Like a strongly interacting quantum dot 
or atom with complicated Kanamori 
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H =
X

i<j,k<l

Uijkl c
†
i c

†
jckcl

|Uijkl|2 =
2U2

N3

See also A. Georges and O. Parcollet PRB 59, 5341 (1999)

A strongly correlated metal built from Sachdev-Ye-Kitaev models

Xue-Yang Song,1, 2 Chao-Ming Jian,2, 3 and Leon Balents2

1International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
2Kavli Institute of Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

3Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA
(Dated: May 8, 2017)

Strongly correlated metals comprise an enduring puzzle at the heart of condensed matter physics.
Commonly a highly renormalized heavy Fermi liquid occurs below a small coherence scale, while at
higher temperatures a broad incoherent regime pertains in which quasi-particle description fails. Despite
the ubiquity of this phenomenology, strong correlations and quantum fluctuations make it challenging to
study. The Sachdev-Ye-Kitaev(SYK) model describes a 0 + 1D quantum cluster with random all-to-all
four-fermion interactions among N Fermion modes which becomes exactly solvable as N ! 1, exhibiting
a zero-dimensional non-Fermi liquid with emergent conformal symmetry and complete absence of quasi-
particles. Here we study a lattice of complex-fermion SYK dots with random inter-site quadratic hopping.
Combining the imaginary time path integral with real time path integral formulation, we obtain a heavy
Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature
Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find
linear in temperature resistivity in the incoherent regime, and a Lorentz ratio L ⌘ ⇢T varies between two
universal values as a function of temperature. Our work exemplifies an analytically controlled study of a
strongly correlated metal.

Prominent systems like the high-Tc cuprates and heavy
fermions display intriguing features going beyond the quasi-
particle description[1–9]. The exactly soluble SYK models
provide a powerful framework to study such physics. The
most-studied SYK4 model, a 0 + 1D quantum cluster of N
Majorana fermion modes with random all-to-all four-fermion
interactions[10–18] has been generalized to SYKq models
with q-fermion interactions. Subsequent works[19, 20] ex-
tended the SYK model to higher spatial dimensions by cou-
pling a lattice of SYK4 quantum clusters by additional four-
fermion “pair hopping” interactions. They obtained electrical
and thermal conductivities completely governed by di↵usive
modes and nearly temperature-independent behavior owing to
the identical scaling of the inter-dot and intra-dot couplings.

Here, we take one step closer to realism by considering a
lattice of complex-fermion SYK clusters with SYK4 intra-
cluster interaction of strength U0 and random inter-cluster
“SYK2” two-fermion hopping of strength t0[21–25]. Un-
like the previous higher dimensional SYK models where lo-
cal quantum criticality governs the entire low temperature
physics, here as we vary the temperature, two distinctive
metallic behaviors appear, resembling the previously men-
tioned heavy fermion systems. We assume t0 ⌧ U0, which
implies strong interactions, and focus on the correlated regime
T ⌧ U0. We show the system has a coherence temperature
scale Ec ⌘ t2

0/U0[21, 26, 27] between a heavy Fermi liquid
and an incoherent metal. For T < Ec, the SYK2 induces a

Fermi liquid, which is however highly renormalized by the
strong interactions. For T > Ec, the system enters the incoher-
ent metal regime and the resistivity ⇢ depends linearly on tem-
perature. These results are strikingly similar to those of Par-
collet and Georges[28], who studied a variant SYK model ob-
tained in a double limit of infinite dimension and large N. Our
model is simpler, and does not require infinite dimensions. We
also obtain further results on the thermal conductivity , en-
tropy density and Lorentz ratio[29, 30] in this crossover. This
work bridges traditional Fermi liquid theory and the hydrody-
namical description of an incoherent metallic system.

SYK model and Imaginary-time formulation - We consider
a d-dimensional array of quantum dots, each with N species
of fermions labeled by i, j, k · · · ,
H =

X

x

X

i< j,k<l

Ui jkl,xc†ixc†jxckxclx +
X

hxx0i

X

i, j

ti j,xx0c
†
i,xc j,x0 (1)

where Ui jkl,x = U⇤kli j,x and ti j,xx0 = t⇤ji,x0x are random zero mean
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Low ‘coherence’ scale

Ec ⇠
t20
U

4

The density-density correlator is expressed as

DRn(x,t; x0,t0) ⌘ i✓(t � t0)h[N(x,t),N(x0,t0)]i
=

i
2
hNc(x,t)Nq(x0,t0)i, (10)

where Ns ⌘ N�S '
�'̇s

, Nc/q = N+ ± N�(keeping momentum-
independent components- See Sec.B). Adding a contact term
to ensure that limp!0 DRn(p,! , 0) = 0[31], the action (9)
yields the di↵usive form [32]

DRn(p,!) =
�iNK!

i! � D'p2 + NK =
�NKD'p2

i! � D'p2 . (11)

From this we identify NK and D' as the compressibility and
charge di↵usion constant, respectively. The electric conduc-
tivity is given by Einstein relation � ⌘ 1/⇢ = NKD', or,
restoring all units,� = NKD' e2

~ a2�d(a is lattice spacing).
Note the proportionality to N: in the standard non-linear
sigma model formulation, the dimensionless conductance is
large, suppressing localization e↵ects. This occurs because
both U and t interactions scatter between all orbitals, destroy-
ing interference from closed loops.

The analysis of energy transport proceeds similarly. Since
energy is the generator of time translations, one considers the
time-reparametrization (TRP) modes induced by ts ! ts+✏s(t)
and defines ✏c/q = 1

2 (✏+ ± ✏�). The e↵ective action for TRP
modes to the lowest-order in p,! reads (Sec. B)

iS ✏ =
X

p

Z +1

�1
d! ✏c,!(2i�!2T 2 � p2⇤3(!))✏q,�! + · · · , (12)

where the ellipses has the same meaning as in (9). At low
frequency, the correlation function integral, given in Sec. B,
behaves as ⇤3(!) ⇡ 2�D✏T 2!, which defines the energy dif-
fusion constant D✏ . This identification is seen from the corre-
lator for energy density modes "c/q ⌘ iN�S ✏

�✏̇c/q
,

DR"(p,!) =
i
2
h"c"qip,! = �NT 2�D✏ p2

i! � D✏ p2 , (13)

where we add a contact term to ensure conservation of energy
at p = 0. The thermal conductivity reads  = NT�D✏ (kB = 1)
–like �, is O(N).

Scaling collapse, Kadowaki-Woods and Lorentz ra-
tios – Electric/thermal conductivities are obtained from
lim!!0 ⇤2/3(!)/!, expressed as integrals of real-time corre-
lation functions, and can be evaluated numerically for any
T, t0,U0. Introducing generalized resistivities, ⇢' = ⇢, ⇢" =
T/, we find remarkably that for t0,T ⌧ U0, they collapse to
universal functions of one variable,

⇢⇣(t0,T ⌧ U0) =
1
N

R⇣( T
Ec

) ⇣ 2 {', "}, (14)

where R'(T ), R"(T ) are dimensionless universal functions.
This scaling collapse is verified by direct numerical calcula-
tions shown in Fig. 3a. From the scaling form (B2), we see the
low temperature resistivity obeys the usual Fermi liquid form

⇢⇣(T ⌧ Ec) ⇡ ⇢⇣(0) + A⇣T 2, (15)

(a)

(b)

FIG. 3. (a): For t0,T ⌧ U0, ⇢'/" “collapse” to R'/"( T
Ec

)/N. (b): The
Lorentz ratio ⇢

T reaches two constants ⇡2

3 ,
⇡2

8 , in the two regimes.
The solid curves are guides to the eyes.

where the temperature coe�cient of resistivity A⇣ =
R00⇣ (0)
2NE2

c
is

large due to small coherence scale in denominator, charac-
teristic of a strongly correlated Fermi liquid. Famously, the
Kadowaki-Woods ratio, A'/(N�)2, is approximately system-
independent for a wide range of correlated materials[33, 34].
We find here A'

(N�)2 =
R00' (0)

2[S0(0)]2N3 is independent of t0 and U0!
Turning now to the incoherent metal regime, in limit of

large arguments, T � 1, the generalized resistivities vary lin-
early with temperature: R⇣(T ) ⇠ c⇣ T . We analytically obtain
c' = 2p

⇡
and c" = 16

⇡5/2 (Supplementary Information), implying
that the Lorenz number, characterizing the Wiedemann-Franz
law, takes the unusual value L = 

�T ! ⇡2

8 for Ec ⌧ T ⌧ U0.
More generally, the scaling form (B2) implies that L is a uni-
versal function of T/Ec, verified numerically as shown in
Fig. 3b. The Lorenz number increases with lower tempera-
ture, saturating at T ⌧ Ec to the Fermi liquid value ⇡2/3.

Conclusion – We have shown that the SYK model pro-
vides a soluble source of strong local interactions which,
when coupled into a higher-dimensional lattice by ordinary
but random electron hopping, reproduces a remarkable num-
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independent components- See Sec.B). Adding a contact term
to ensure that limp!0 DRn(p,! , 0) = 0[31], the action (9)
yields the di↵usive form [32]
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i! � D'p2 + NK =
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From this we identify NK and D' as the compressibility and
charge di↵usion constant, respectively. The electric conduc-
tivity is given by Einstein relation � ⌘ 1/⇢ = NKD', or,
restoring all units,� = NKD' e2

~ a2�d(a is lattice spacing).
Note the proportionality to N: in the standard non-linear
sigma model formulation, the dimensionless conductance is
large, suppressing localization e↵ects. This occurs because
both U and t interactions scatter between all orbitals, destroy-
ing interference from closed loops.

The analysis of energy transport proceeds similarly. Since
energy is the generator of time translations, one considers the
time-reparametrization (TRP) modes induced by ts ! ts+✏s(t)
and defines ✏c/q = 1

2 (✏+ ± ✏�). The e↵ective action for TRP
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where the ellipses has the same meaning as in (9). At low
frequency, the correlation function integral, given in Sec. B,
behaves as ⇤3(!) ⇡ 2�D✏T 2!, which defines the energy dif-
fusion constant D✏ . This identification is seen from the corre-
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,
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where we add a contact term to ensure conservation of energy
at p = 0. The thermal conductivity reads  = NT�D✏ (kB = 1)
–like �, is O(N).

Scaling collapse, Kadowaki-Woods and Lorentz ra-
tios – Electric/thermal conductivities are obtained from
lim!!0 ⇤2/3(!)/!, expressed as integrals of real-time corre-
lation functions, and can be evaluated numerically for any
T, t0,U0. Introducing generalized resistivities, ⇢' = ⇢, ⇢" =
T/, we find remarkably that for t0,T ⌧ U0, they collapse to
universal functions of one variable,

⇢⇣(t0,T ⌧ U0) =
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R⇣( T
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) ⇣ 2 {', "}, (14)

where R'(T ), R"(T ) are dimensionless universal functions.
This scaling collapse is verified by direct numerical calcula-
tions shown in Fig. 3a. From the scaling form (B2), we see the
low temperature resistivity obeys the usual Fermi liquid form

⇢⇣(T ⌧ Ec) ⇡ ⇢⇣(0) + A⇣T 2, (15)
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FIG. 3. (a): For t0,T ⌧ U0, ⇢'/" “collapse” to R'/"( T
Ec

)/N. (b): The
Lorentz ratio ⇢

T reaches two constants ⇡2

3 ,
⇡2

8 , in the two regimes.
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where the temperature coe�cient of resistivity A⇣ =
R00⇣ (0)
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large due to small coherence scale in denominator, charac-
teristic of a strongly correlated Fermi liquid. Famously, the
Kadowaki-Woods ratio, A'/(N�)2, is approximately system-
independent for a wide range of correlated materials[33, 34].
We find here A'

(N�)2 =
R00' (0)

2[S0(0)]2N3 is independent of t0 and U0!
Turning now to the incoherent metal regime, in limit of

large arguments, T � 1, the generalized resistivities vary lin-
early with temperature: R⇣(T ) ⇠ c⇣ T . We analytically obtain
c' = 2p

⇡
and c" = 16

⇡5/2 (Supplementary Information), implying
that the Lorenz number, characterizing the Wiedemann-Franz
law, takes the unusual value L = 

�T ! ⇡2

8 for Ec ⌧ T ⌧ U0.
More generally, the scaling form (B2) implies that L is a uni-
versal function of T/Ec, verified numerically as shown in
Fig. 3b. The Lorenz number increases with lower tempera-
ture, saturating at T ⌧ Ec to the Fermi liquid value ⇡2/3.

Conclusion – We have shown that the SYK model pro-
vides a soluble source of strong local interactions which,
when coupled into a higher-dimensional lattice by ordinary
but random electron hopping, reproduces a remarkable num-

Low ‘coherence’ scale

Ec ⇠
t20
U

For Ec < T < U , the

resistivity, ⇢, and
entropy density, s, are

⇢ ⇠ h
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✓
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Ec

◆
, s = s0
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lation functions, and can be evaluated numerically for any
T, t0,U0. Introducing generalized resistivities, ⇢' = ⇢, ⇢" =
T/, we find remarkably that for t0,T ⌧ U0, they collapse to
universal functions of one variable,

⇢⇣(t0,T ⌧ U0) =
1
N

R⇣( T
Ec

) ⇣ 2 {', "}, (14)

where R'(T ), R"(T ) are dimensionless universal functions.
This scaling collapse is verified by direct numerical calcula-
tions shown in Fig. 3a. From the scaling form (B2), we see the
low temperature resistivity obeys the usual Fermi liquid form

⇢⇣(T ⌧ Ec) ⇡ ⇢⇣(0) + A⇣T 2, (15)

(a)

(b)

FIG. 3. (a): For t0,T ⌧ U0, ⇢'/" “collapse” to R'/"( T
Ec

)/N. (b): The
Lorentz ratio ⇢

T reaches two constants ⇡2

3 ,
⇡2

8 , in the two regimes.
The solid curves are guides to the eyes.

where the temperature coe�cient of resistivity A⇣ =
R00⇣ (0)
2NE2

c
is

large due to small coherence scale in denominator, charac-
teristic of a strongly correlated Fermi liquid. Famously, the
Kadowaki-Woods ratio, A'/(N�)2, is approximately system-
independent for a wide range of correlated materials[33, 34].
We find here A'

(N�)2 =
R00' (0)

2[S0(0)]2N3 is independent of t0 and U0!
Turning now to the incoherent metal regime, in limit of

large arguments, T � 1, the generalized resistivities vary lin-
early with temperature: R⇣(T ) ⇠ c⇣ T . We analytically obtain
c' = 2p

⇡
and c" = 16

⇡5/2 (Supplementary Information), implying
that the Lorenz number, characterizing the Wiedemann-Franz
law, takes the unusual value L = 

�T ! ⇡2

8 for Ec ⌧ T ⌧ U0.
More generally, the scaling form (B2) implies that L is a uni-
versal function of T/Ec, verified numerically as shown in
Fig. 3b. The Lorenz number increases with lower tempera-
ture, saturating at T ⌧ Ec to the Fermi liquid value ⇡2/3.

Conclusion – We have shown that the SYK model pro-
vides a soluble source of strong local interactions which,
when coupled into a higher-dimensional lattice by ordinary
but random electron hopping, reproduces a remarkable num-

Low ‘coherence’ scale

Ec ⇠
t20
U

For T < Ec, the

resistivity, ⇢, and
entropy density, s, are

⇢ =

h

e2

"
c1 + c2

✓
T

Ec

◆2
#

s ⇠ s0

✓
T

Ec

◆



Black 
holes

• Black holes have an entropy

and a temperature, TH .

• The entropy is proportional

to their surface area.

• They relax to thermal equi-

librium in a time⇠ ~/(kBTH).
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• The Hawking temperature, TH influences the radiation from the
black hole at the very last stages of the ring-down (not observed
so far). The ring-down (approach to thermal equilibrium) hap-

pens very rapidly in a time ⇠ ~
kBTH

=
8⇡GM

c3
⇠ 8 milliseconds.
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AdS/CFT correspondence at non-zero temperatures

AdS4-Schwarzschild black-brane

There is a family of 
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SYK and black holes

T2

Is there a holographic quantum 
gravity dual of the SYK model ?



The SYK model

• The last property indicates ⌧eq ⇠ ~/(kBT ), and this

has been found in a recent numerical study.

• Low energy, many-body density of states

⇢(E) ⇠ eNs0
sinh(

p
2(E � E0)N�)

• Low temperature entropy S = Ns0 +N�T + . . ..

• T = 0 fermion Green’s function G(⌧) ⇠ ⌧�1/2
at

large ⌧ . (Fermi liquids with quasiparticles have G(⌧) ⇠
1/⌧)

• T > 0 Green’s function has conformal invariance

G ⇠ (T/ sin(⇡kBT ⌧/~))1/2
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Is there any black hole which holographically 
matches these properties ?

SYK and black holes
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density Q
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T2

SYK and black holes
Black hole

horizon

The leading low temperature properties of an AdS-Reissner-Nordstrom
black hole (as computed by T. Faulkner, H. Liu, J. McGreevy, and
D. Vegh, arXiv:0907.2694) match those of the SYK model.
The mapping applies when temperature ⌧ 1/(size of T2).

AdS2 ⇥ T2

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt
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SYK and black holes
Black hole

horizon

AdS2 ⇥ T2

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

Quantum gravity on the 1+1 dimensional spacetime AdS2 
(when embedded in AdS4) is holographically matched 

to the 0+1 dimensional SYK model

S. Sachdev, PRL 105, 151602 (2010); A. Kitaev (unpublished); J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857
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SYK and black holes

• The last property indicates ⌧eq ⇠ ~/(kBT ), and this

has been found in a recent numerical study.

All these properties of the SYK model match those
of the AdS2 horizon in Einstein-Maxwell theory

S. Sachdev, PRL 105, 151602 (2010)
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SYK and black holes

Schwarzian theory of quantum gravity 
fluctuations also matches these corrections

A Kitaev, unpublished, J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857;                               
D. Stanford and E. Witten, arXiv:1703.04612



Many-body quantum chaos

A. Kitaev, unpublished
J. Maldacena and D. Stanford, 

arXiv:1604.07818

• Using holographic analogies, Shenker and Stanford

introduced the “Lyapunov time”, ⌧L, the time over

which a generic many-body quantum system loses

memory of its initial state.

• A shortest-possible time to reach quantum chaos was

established

⌧L � ~
2⇡kBT

• The SYK model, and black holes in Einstein gravity,

saturate the bound on the Lyapunov time

⌧L =

~
2⇡kBT

S. Shenker and D. Stanford, arXiv:1306.0622

          J. Maldacena, S. H. Shenker and 
D. Stanford, arXiv:1503.01409
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Quantum matter without quasiparticles:

• No quasiparticle

decomposition of low-lying states:

E 6=
P

↵ n↵"↵
+

P
↵,� F↵�n↵n� + . . .

• Thermalization and many-body chaos in

the shortest possible time of order ~/(kBT ).

• These are also characteristics of black holes

in quantum gravity.
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