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Iron pnictides: 
a new class of high temperature superconductors

Saturday, April 14, 2012



TSDW 
Tc

 

T0 

2.0 

0 

!"

1.0 SDW 

Superconductivity 

BaFe2(As1-xPx)2 

AF

Resistivity
∼ ρ0 +ATα

S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, 
H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, 

Physical Review B 81, 184519 (2010)
Saturday, April 14, 2012



TSDW 
Tc

 

T0 

2.0 

0 

!"

1.0 SDW 

Superconductivity 

BaFe2(As1-xPx)2 

AF

Resistivity
∼ ρ0 +ATα

S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, 
H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, 

Physical Review B 81, 184519 (2010)

Short-range entanglement 
in state with Neel (AF) order

Saturday, April 14, 2012



TSDW 
Tc

 

T0 

2.0 

0 

!"

1.0 SDW 

Superconductivity 

BaFe2(As1-xPx)2 

AF

Resistivity
∼ ρ0 +ATα

S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, 
H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, 

Physical Review B 81, 184519 (2010)

Superconductor
Bose condensate of pairs of electrons

Short-range entanglement
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Sommerfeld-Bloch-Landau theory of ordinary metals

Momenta with
electron states
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• Area enclosed by the Fermi surface A = Q,
the electron density

• Excitations near the Fermi surface are responsible for the famil-
iar properties of ordinary metals, such as resistivity ∼ T 2.

Key feature of the theory: 
the Fermi surface

A

Sommerfeld-Bloch-Landau theory of ordinary metals
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YBa2Cu3O6+x

High temperature 
superconductors
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• Consider an infinite, continuum,

translationally-invariant quantum system with a glob-

ally conserved U(1) chargeQ (the “electron density”)

in spatial dimension d > 1.

• Describe zero temperature phases where d�Q�/dµ �=
0, where µ (the “chemical potential”) which changes

the Hamiltonian, H, to H − µQ.

• Compressible systems must be gapless.

• Conformal quantum matter is compressible in

d = 1, but not for d > 1.

Compressible quantum matter
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The only compressible phase of traditional 
condensed matter physics which does not 
break the translational or U(1) symmetries 

is the Landau Fermi liquid 
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=

• Model of a spin liquid (“Bose metal”): couple fermions to a
dynamical gauge field Aµ.

L = f†
σ

�
∂τ − iAτ − (∇− iA)2

2m
− µ

�
fσ

The Non-Fermi Liquid (NFL)
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STM measurements of Z(r),
energy asymmetry in density of states

M. J. Lawler, K. Fujita,

Jhinhwan Lee,

A. R. Schmidt,

Y. Kohsaka, Chung Koo

Kim, H. Eisaki,

S. Uchida, J. C. Davis,

J. P. Sethna, and

Eun-Ah Kim, preprint
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Strong anisotropy of 
electronic states between 

x and y directions:
Electronic 

“Ising-nematic” order
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Broken rotational symmetry 
in the pseudogap phase of a 
high-Tc superconductor
R. Daou, J. Chang, David LeBoeuf, Olivier Cyr-
Choiniere, Francis Laliberte, Nicolas Doiron-
Leyraud, B. J. Ramshaw, Ruixing Liang, 
D. A. Bonn, W. N. Hardy,  and Louis Taillefer
Nature, 463, 519 (2010).
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Fermi surface with full square lattice symmetry

Quantum criticality of Ising-nematic ordering

x

y
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Spontaneous elongation along x direction:
Ising order parameter φ > 0.

x

y
Quantum criticality of Ising-nematic ordering
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Spontaneous elongation along y direction:
Ising order parameter φ < 0.

Quantum criticality of Ising-nematic ordering
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Ising-nematic order parameter

φ ∼
�

d2k (cos kx − cos ky) c†kσckσ

Measures spontaneous breaking of square lattice

point-group symmetry of underlying Hamiltonian
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Spontaneous elongation along y direction:
Ising order parameter φ < 0.

Quantum criticality of Ising-nematic ordering
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rrc

Pomeranchuk instability as a function of coupling r

�φ� = 0�φ� �= 0

or

Quantum criticality of Ising-nematic ordering
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Phase diagram as a function of T and r
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Phase diagram as a function of T and r
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Low energy theory of this strange metal is essentially 
identical to that of a Fermi surface coupled to a gauge field
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L = f†
σ

�
∂τ − ∇2

2m
− µ

�
fσ

Fermi surface of an ordinary metal

A
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S.-S. Lee, Phys. Rev. B 80, 165102 (2009)

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

D. F. Mross, J. McGreevy, H. Liu, and T. Senthil, Phys. Rev. B 82, 045121 (2010)

• Area enclosed by the Fermi surface A = Q, the
fermion density

• Critical continuum of excitations near the Fermi sur-
face with energy ω ∼ |q|z, where q = |k| − kF is the
distance from the Fermi surface and z is the dynamic
critical exponent.

Fermions coupled to a gauge field

L = f†
σ

�
∂τ − iAτ − (∇− iA)2

2m
− µ

�
fσ
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• Gauge-dependent Green’s functionG−1
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Three-loop computation shows η �= 0 and z = 3/2.
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• ’tHooft’s argument for the large Nc limit of pure Yang-Mills

theory applies unchanged. Feynman diagrams acquire a factor

of 1/Ng
c where g is genus of the surface defined by the Feynman

diagram.

• The Nc → ∞ limit requires summation of all “planar” graphs.

• There is Landau damping of gauge bosons, and non-Fermi liquid

damping of fermions, in the planar limit, and hence the possi-

bility of a deconfined compressible phase with a scale-invariant

structure at low energies.

• The pairing instability to superconducting phases is subdomi-

nant in the 1/Nc expansion.

• We will now present a conjectured gravity dual of this theory.

Study the large Nc limit of a SU(Nc) Yang-Mills gauge field coupled 
to adjoint (matrix) fermions at a non-zero chemical potential 
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For a relativistic CFT in d spatial dimensions, the
metric in the holographic space is uniquely fixed
by demanding the following scale transformaion
(i = 1 . . . d)

xi → ζxi , t → ζt , ds → ds

This gives the unique metric

ds2 =
1

r2
�
−dt2 + dr2 + dx2

i

�

Reparametrization invariance in r has been used
to the prefactor of dx2

i equal to 1/r2. This fixes
r → ζr under the scale transformation. This is
the metric of the space AdSd+2.
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Consider the following (most) general metric for the
holographic theory

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

This metric transforms under rescaling as

xi → ζ xi

t → ζz t

ds → ζθ/d ds.

This identifies z as the dynamic critical exponent (z = 1
for “relativistic” quantum critical points).

What is θ ? (θ = 0 for “relativistic” quantum criti-
cal points).

Saturday, April 14, 2012



Consider the following (most) general metric for the
holographic theory

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

This metric transforms under rescaling as

xi → ζ xi

t → ζz t

ds → ζθ/d ds.

This identifies z as the dynamic critical exponent (z = 1
for “relativistic” quantum critical points).

What is θ ? (θ = 0 for “relativistic” quantum criti-
cal points).

Saturday, April 14, 2012



Consider the following (most) general metric for the
holographic theory

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

This metric transforms under rescaling as

xi → ζ xi

t → ζz t

ds → ζθ/d ds.

This identifies z as the dynamic critical exponent (z = 1
for “relativistic” quantum critical points).

What is θ ? (θ = 0 for “relativistic” quantum criti-
cal points).

Saturday, April 14, 2012



At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the

thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the

“area” of the horizon, and so S ∼ r−d
h

r
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At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the

thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the

“area” of the horizon, and so S ∼ r−d
h

Under rescaling r → ζ(d−θ)/dr, and the
temperature T ∼ t−1, and so

S ∼ T (d−θ)/z = T deff/z

where θ = d−deff measures “dimension deficit” in
the phase space of low energy degrees of a freedom.
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A non-Fermi liquid has gapless fermionic excita-
tions on the Fermi surface, which disperse in the
single transverse direction with dynamic critical
exponent z, with entropy density ∼ T 1/z. So
we expect compressible quantum states to have
deff = 1, or

θ = d− 1

Holography of non-Fermi liquids

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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B

A

Entanglement entropy

Measure strength of quantum
entanglement of region A with region B.

ρA = TrBρ = density matrix of region A
Entanglement entropy SEE = −Tr (ρA ln ρA)

Saturday, April 14, 2012



Logarithmic violation of “area law”: SEE =
1

12
(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

B

A

Entanglement entropy of Fermi surfaces

D. Gioev and I. Klich, Physical Review Letters 96, 100503 (2006)
B. Swingle,  Physical Review Letters 105, 050502 (2010)
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for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

B

A

Y.  Zhang, T. Grover,  and A. Vishwanath, Physical Review Letters 107, 067202 (2011)

Entanglement entropy of Fermi surfaces

Saturday, April 14, 2012



r
Emergent holographic direction

A

Holographic entanglement entropy
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r
Emergent holographic direction

A
Area of 
minimal 

surface equals 
entanglement

entropy

Holographic entanglement entropy

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).
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Holography of non-Fermi liquids

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

• The entanglement entropy exhibits logarithmic vio-
lation of the area law only for this value of θ !

• The co-efficient of the logarithmic term is consistent
with the Luttinger relation.

• Many other features of the holographic theory are
consistent with a boundary theory which has “hid-
den” Fermi surfaces of gauge-charged fermions.

θ = d− 1
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• The entanglement entropy exhibits logarithmic vio-
lation of the area law only for this value of θ !

• The metric can be realized as the solution of a Einstein-
Maxwell-Dilaton theory with no explicit fermions.
The density of the “hidden Fermi surfaces” of the
boundary gauge-charged fermions can be deduced
from the electric flux leaking to r → ∞.

Holography of non-Fermi liquids

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

θ = d− 1

N. Ogawa, T. Takayanagi, and T. Ugajin, arXiv:1111.1023 
L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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�
− dt2
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i

�

θ = d− 1

K. Goldstein, S. Kachru, S. Prakash, and S. P. Trivedi JHEP 1008, 078 (2010)
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• The co-efficient of the logarithmic term in the entan-
glement entropy is insensitive to all short-distance
details, and depends only upon the fermion density.

• The two methods of deducing with fermion density,
from the electric flux as r → ∞ and from the entan-
glement entropy, are consistent with the Luttinger
relation !

Holography of non-Fermi liquids

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

θ = d− 1

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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Inequalities

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

The area law of entanglement entropy is obeyed for

θ ≤ d− 1.

The “null energy condition” of the gravity theory yields

z ≥ 1 +
θ

d
.

Remarkably, for d = 2, θ = d − 1 and z = 1 + θ/d, we obtain
z = 3/2, the same value associated with the field theory.

N. Ogawa, T. Takayanagi, and T. Ugajin, arXiv:1111.1023 
L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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Holographic theory of a non-Fermi liquid (NFL)

Gauss Law in the bulk
⇔ Luttinger theorem on the boundary
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Holographic theory of a fractionalized-Fermi liquid (FL*)

Gauss Law in the bulk
⇔ Luttinger theorem on the boundary
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Holographic theory of a Fermi liquid (FL)

Gauss Law in the bulk
⇔ Luttinger theorem on the boundary
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Field theory Holography

A gauge-dependent Fermi
surface of overdamped
gapless fermions.

Fermi surface is hidden.

Thermal entropy density S ∼
T 1/z in d = 2, where z is the
dynamic critical exponent.

Thermal entropy density S ∼
T 1/z in all d for hyperscaling
violation exponent θ = d− 1,
and z the dynamic critical ex-
ponent.

Logarithmic violation of area
law of entanglement entropy,
with prefactor proportional
to the product of Q(d−1)/d

and the boundary area of the
entangling region.

Logarithmic violation of area
law of entanglement entropy
for θ = d − 1, with prefactor
proportional to the product
of Q(d−1)/d and the boundary
area of the entangling region.

Theory of a non-Fermi liquid (NFL)
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Field theory Holography

Three-loop analysis shows
z = 3/2 in d = 2.

Existence of gravity dual im-
plies z ≥ 1 + θ/d; leads to
z ≥ 3/2 for θ = d−1 in d = 2.

Fermi surface encloses a vol-
ume proportional to Q, as de-
manded by the Luttinger re-
lation.

The value of kF obtained
from the entanglement en-
tropy implies the Fermi sur-
face encloses a volume pro-
portional to Q, as demanded
by the Luttinger relation.

Gauge neutral ‘mesinos’ re-
duce the volume enclosed
by Fermi surfaces of gauge-
charged fermions to Q −
Qmesino.

Gauge neutral ‘mesinos’ re-
duce the volume enclosed by
hidden Fermi surfaces to Q−
Qmesino.

Theory of a non-Fermi liquid (NFL)
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1. Strange metals

A. Field theory

               B. Holography

2. The superfluid-insulator
         quantum phase transition
                   

                  A. Field theory

               B. Holography
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Rob Myers Ajay Singh
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M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Ultracold 87Rb
atoms - bosons

Superfluid-insulator transition

Saturday, April 14, 2012



[bj , b
†
k] = δjk

The Superfluid-Insulator transition

Boson Hubbard model

M.P. A. Fisher,  P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
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Excitations of the insulator:

S =
�

d2rdτ
�
|∂τψ|2 + v2|�∇ψ|2 + (g − gc)|ψ|2 +

u

2
|ψ|4

�

M.P. A. Fisher,  P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
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T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT
�ψ� �= 0 �ψ� = 0
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InsulatorSuperfluid

Quantum
critical

TKT

CFT3

�ψ� �= 0 �ψ� = 0
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g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT

CFT3 at T>0
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Quantum critical transport 

S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

Quantum “nearly perfect fluid”
with shortest possible
equilibration time, τeq

τeq = C �
kBT

where C is a universal constant
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Quantum critical transport 

M.P.A. Fisher, G. Grinstein, and S.M. Girvin, Phys. Rev. Lett. 64, 587 (1990)                                                             
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

σ =
Q2

h
× [Universal constant O(1) ]

(Q is the “charge” of one boson)

Transport co-oefficients not determined
by collision rate, but by

universal constants of nature

Conductivity
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Quantum critical transport 
Transport co-oefficients not determined

by collision rate, but by
universal constants of nature

Momentum transport
η

s
≡

viscosity
entropy density

=
�

kB
× [Universal constant O(1) ]
P. Kovtun, D. T. Son, and A. Starinets, Phys. Rev. Lett.  94, 11601 (2005)
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Describe charge transport using Boltzmann theory of in-
teracting bosons:

dv

dt
+

v

τc
= F.

This gives a frequency (ω) dependent conductivity

σ(ω) =
σ0

1− iω τc

where τc ∼ �/(kBT ) is the time between boson collisions.

Also, we have σ(ω → ∞) = σ∞, associated with the den-
sity of states for particle-hole creation (the “optical con-
ductivity”) in the CFT3.

Quantum critical transport 
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Boltzmann theory of bosons

σ0

σ∞

ω

1/τc

Re[σ(ω)]
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g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT
�ψ� �= 0 �ψ� = 0

So far, we have described the quantum critical point using
the boson particle and hole excitations of the insulator.
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However, we could equally well describe the conductivity

using the excitations of the superfluid, which are vortices.

These are quantum particles (in 2+1 dimensions) which

described by a (mirror/e.m.) “dual” CFT3 with an emer-

gent U(1) gauge field. Their T > 0 dynamics can also be

described by a Boltzmann equation:

Conductivity = Resistivity of vortices

g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT
�ψ� �= 0 �ψ� = 0
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Boltzmann theory of bosons

σ0

σ∞

ω

1/τc

Re[σ(ω)]
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Boltzmann theory of vortices

σ∞1/τcv

1/σ0v

Re[σ(ω)]

ω
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Boltzmann theory of bosons

σ0

σ∞

ω

1/τc

Re[σ(ω)]
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Vector large N expansion for CFT3

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

�ω
kBT

1

; Σ → a universal functionσ =
Q2

h
Σ

�
�ω
kBT

�

O(N)

O(1/N)

Re[σ(ω)]
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r

J. McGreevy, arXiv0909.0518
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For a relativistic CFT in d spatial dimensions, the
metric in the holographic space is uniquely fixed
by demanding the following scale transformaion
(i = 1 . . . d)

xi → ζxi , t → ζt , ds → ds

This gives the unique metric

ds2 =
1

r2
�
−dt2 + dr2 + dx2

i

�

Reparametrization invariance in r has been used
to the prefactor of dx2

i equal to 1/r2. This fixes
r → ζr under the scale transformation. This is
the metric of the space AdSd+2.
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AdS4 theory of “nearly perfect fluids”

C. P. Herzog, P. K. Kovtun, S. Sachdev, and D. T. Son,

Phys. Rev. D 75, 085020 (2007).

To leading order in a gradient expansion, charge transport in
an infinite set of strongly-interacting CFT3s can be described by
Einstein-Maxwell gravity/electrodynamics on AdS4-Schwarzschild

SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab

�
.
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SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab

�
.

AdS4 theory of “nearly perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

We include all possible 4-derivative terms: after suitable field
redefinitions, the required theory has only one dimensionless
constant γ (L is the radius of AdS4):

SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab +
γL2

e2
CabcdF

abF cd

�
,

where Cabcd is the Weyl curvature tensor.
Stability and causality constraints restrict |γ| < 1/12.
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AdS4 theory of strongly interacting “perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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0.5
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ω

4πT

γ = 0

γ =
1

12

γ = − 1

12

AdS4 theory of strongly interacting “perfect fluids”

• The γ > 0 result has similarities to
the quantum-Boltzmann result for
transport of particle-like excitations

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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h

Q2
σ
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ω

4πT

γ = 0

γ =
1

12

γ = − 1

12

AdS4 theory of strongly interacting “perfect fluids”

• The γ < 0 result can be interpreted
as the transport of vortex-like
excitations

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of strongly interacting “perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

• The γ = 0 case is the exact result for the large N limit
of SU(N) gauge theory with N = 8 supersymmetry (the
ABJM model). The ω-independence is a consequence of
self-duality under particle-vortex duality (S-duality).
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AdS4 theory of strongly interacting “perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

• Stability constraints on the effective
theory (|γ| < 1/12) allow only a lim-
ited ω-dependence in the conductivity
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Theory for transport of conserved quantities in CFT3s:

SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab +
γL2

e2
CabcdF

abF cd

�
,

where Cabcd is the Weyl curvature tensor.

General approach:

• Theory has 2 free dimensionless parameters: e2 and γ. We match
these to correlators of the CFT3 of interest at ω � T : e2 is determines
the current correlator �JµJν�, while γ determines the 3-point function
�TµνJρJσ�, where Tµν is the stress-energy tensor.

• We determine these ω � T correlators of the CFT3 by other methods
(e.g. vector large N expansion), and so obtain values of e2 and γ.

• We use SEM to extrapolate to transport properties for ω � T . This
step is traditionally carried out by descendants of the Boltzmann
equation.

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

AdS4 theory of “nearly perfect fluids”
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R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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• We use SEM to extrapolate to transport properties for ω � T . This
step is traditionally carried out by descendants of the Boltzmann
equation.
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