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Motivated by recent experiments on the phonon contribution to the thermal Hall effect in the cuprates, we
present an analysis of chiral phonon transport. We assume the chiral behavior arises from a nonzero phonon Hall
viscosity, which is likely induced by the coupling to electrons. Phonons with a nonzero phonon Hall viscosity
have an intrinsic thermal Hall conductivity, but Chen et al. [Phys. Rev. Lett. 124, 167601 (2020)] have argued
that a significantly larger thermal Hall conductivity can arise from an extrinsic contribution which is inversely
proportional to the density of impurities. We solve the Boltzmann equation for phonon transport and compute
the temperature (T ) dependence of the thermal Hall conductivity originating from skew scattering off pointlike
impurities. We find that the dominant source for thermal Hall transport is an interference between impurity
skew-scattering channels with opposite parity. The thermal Hall conductivity ∼T d+2 at low T in d dimensions,
and has a window of T -independent behavior for T > Timp, where Timp is determined by the ratio of scattering
potentials with opposite parity. We also consider the role of nonspecular scattering off the sample boundary, and
find that it leads to negligible corrections to thermal Hall transport at low T .
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I. INTRODUCTION

Recent experiments [1–8] have focused renewed interest
on thermal Hall effect of correlated electron materials. In
some compounds, including the cuprates, it has been argued
[5,6,8,9] that the dominant contributions to the thermal Hall
conductivity arise from phonons. Two important theoretical
questions arise when computing the thermal Hall conductiv-
ity of phonons. First, what is the origin of the “chirality”
of the phonons, i.e., the breaking of the time-reversal and
mirror symmetries, but not their product? Second, given chiral
phonons, what is their thermal Hall conductivity? This paper
will address the second question.

To set the stage, let us briefly discuss the first question. As
phonons are electrically neutral, any chirality in the phonon
Hamiltonian must ultimately arise from their coupling to the
electrons. For the cuprates, the enhanced thermal Hall effect is
limited to the underdoped regime, implying that the electronic
chirality is connected to the novel strong correlation physics
of the pseudogap phase [6,8]. There have been theoretical pro-
posals for the origin of electronic chirality in the pseudogap
[10–16], and de la Torre et al. [17] have noted a connection to
recent optical second-harmonic generation experiment. Given
chiral electrons, then the electron-phonon coupling is known
to induce nondissipative phonon Hall viscosity terms in the
effective action for the phonons [9,18–23]. For the square
lattice case relevant to the cuprates, the phonon Hall viscosity
induced by a model of chiral spinons [12] is described in a
separate paper [24].

Now we can turn to the second question above, which will
be addressed by us in this paper: Given a phonon system with
a nonzero Hall viscosity, what is its thermal Hall conductivity?
This question has not received significant attention in the

literature. By analogy with computations of the anomalous
Hall effect of electrons [25,26], and as argued by Chen et al.
[9], we can separate the contributions to the phonon ther-
mal Hall conductivity into instrinsic and extrinsic terms. The
intrinsic constribution is present in a perfect infinite crystal
without impurities, and is a consequence of the Berry cur-
vature in the phonon band structure arising from the Hall
viscosity term in the phonon Hamiltonian: an explicit formula
relating the intrinsic thermal Hall conductivity to the phonon
Hall viscosity was obtained in Refs. [9,27]. However, Chen
et al. [9] also argued that this instrinsic thermal Hall effect
is too small to explain observations [3,5,6,8], and a much
larger contribution can arise from extrinsic terms which are
inversely proportional to the density of impurities. Chen et al.
[9] made estimates of this extrinsic contribution to the phonon
thermal Hall conductivity (which we review below), and we
will present here the results of a more complete computation
for scattering off pointlike impurities. More precisely, the
impurity size has to be smaller than the wavelength of the
phonons, and this is a mild restriction for acoustic phonons
at low temperatures. Our results do depend inversely on the
density of impurities as pointed out by Chen et al. [9], but the
proportionality factors are at variance with their estimates for
the cases we consider.

Following Chen et al. [9], we will study the phonon ther-
mal Hall effect from skew scattering on lattice disorder. The
skewness is induced by the phonon Hall viscosity. The theory
we study has the Lagrangian density

L = Lph + LH + Ldis. (1.1)

Here, Lph is the elastic theory of phonons in a tetragonal
lattice; LH denotes the phonon Hall viscosity term; Ldis
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• Field is oriented along the ‘z’ direc-
tion. This could be any direction
relative to the crystal.

• The antiferromagnetic order will ori-
ent perpendicular to the field.

• We focus on an impurity spin mo-
ment �. The local field on � is as-
sumed to be along the ‘3’ direction.
Note that in general ‘z’ 6= ‘3’.
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Kij↵ arises from bond-length dependence of exchange interactions,
in the presence of background magnetic order.
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• Hamiltonian on a lattice   can be decomposed into local terms 
(1-chain)


• Energy current found from Heisenberg equation (2-chain)


• Current between two regions A,B: 

Λ
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A macroscopic description of thermoelectric phenomena involves several tensorial transport coefficients.
Textbook microscopic Kubo formulas for them are plagued with ambiguities in the definitions of the current
operators and the magnetization. We derive a version of these formulas for lattice systems that is free from
ambiguities but contains additional terms compared to the textbook results. For symmetric components of
thermoelectric tensors, we identify a large class of lattice systems for which the additional terms vanish with
a natural choice of the energy current. To eliminate ambiguities in the skew-symmetric components, one needs
to interpret them as relative quantities: only their differences for pairs of materials are well-defined.
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I. INTRODUCTION

Thermoelectric effects have many scientific and techno-
logical applications [1]. They can also serve as probes of
novel materials. Thus it is important to develop a theoretical
framework for computing thermoelectric coefficients in the
most general setting, including strongly interacting materials
without well-defined quasiparticles.

Traditionally, the starting point for microscopic transport
theory is provided by Kubo formulas. These formulas express
transport coefficients in terms of correlators of volume-
averaged current densities of conserved quantities. However,
although Kubo formulas go back to Refs. [2,3] and can be
found in many textbooks and monographs [4,5], there are a
number of subtleties in their derivation. It is well appreci-
ated by now that naive Kubo formulas for skew-symmetric
parts of the transport tensors must be supplemented with
additional terms involving magnetization and “energy mag-
netization” [6]. Such terms affect thermal Hall conductivity
and the skew-symmetric parts of thermoelectric coefficients.
Since magnetizations are intrinsically ambiguous, it is not
obvious how to evaluate such terms, see Ref. [7] for a thor-
ough discussion of magnetizations in general, Refs. [8,9] for
the semiclassical case, and Refs. [10,11] for geometric ap-
proaches to defining energy magnetization. Another rarely
discussed issue is the ambiguity in the definition of the energy
density. One might expect that transport coefficients, being
measurable quantities, are not affected by this ambiguity, but
as far as we know this has been demonstrated only for the
thermal conductivity and only for a special class of systems
[12].

The theory of transport coefficients developed in
Refs. [3,6,7] applies to continuum systems. It cannot be
directly applied to lattice systems because it assumes certain
scaling relations for electric and energy currents which

*kapustin@theory.caltech.edu
†lionspo@caltech.edu

do not hold on a lattice. (In fact, they do not hold for
interacting continuum systems either, except after some
spatial averaging [6]). An even more basic issue is the lack of
an accepted definition of charge and energy current densities
on a lattice. Many expositions of linearized transport theory
(see, e.g., Refs. [4,5]) derive only the expressions for the
volume-averaged current densities. However, in order to
define transport coefficients, one needs to separate currents
into transport and magnetization contributions [6,7]. Such a
separation does not make sense for volume-averaged currents.

Since tight-binding models and other lattice Hamiltonians
are ubiquitous in theoretical condensed matter physics, it is
important to develop a formalism for describing currents of
conserved quantities in such systems. In fact, such a formal-
ism has been described by A. Kitaev many years ago [13],
but it is rarely applied to transport theory. In our recent work
we used it to prove a Bloch theorem for energy currents
[14] and to derive Kubo-type formulas for the electric Hall
conductivity and thermal Hall conductivity of general lattice
systems [15]. In this paper, use the same approach to derive
microscopic formulas for thermoelectric coefficients of gen-
eral lattice systems.

The main results of the paper are as follows. Our formulas
for the symmetric parts of conductivity and thermal conduc-
tivity tensors [15] are completely analogous to continuum
formulas. Surprisingly, this not the case for the symmetric
parts of thermoelectric tensors. In general, microscopic for-
mulas for them contain local terms as well as the expected
Kubo term. We show that these extra terms are in fact required
to ensure that transport coefficients are unaffected by the am-
biguities in the definition of the microscopic energy density.
We also show that in special cases, such as systems of free par-
ticles or systems with only density-dependent interactions, the
additional terms vanish with a natural definition of currents.

The skew-symmetric parts of all transport tensors except
conductivity contain contributions from magnetizations. Since
magnetizations are defined only up to additive constants, this
leads to ambiguities. In the case of thermal conductivity, a
way to resolve the ambiguities on a lattice was described in
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obvious how to evaluate such terms, see Ref. [7] for a thor-
ough discussion of magnetizations in general, Refs. [8,9] for
the semiclassical case, and Refs. [10,11] for geometric ap-
proaches to defining energy magnetization. Another rarely
discussed issue is the ambiguity in the definition of the energy
density. One might expect that transport coefficients, being
measurable quantities, are not affected by this ambiguity, but
as far as we know this has been demonstrated only for the
thermal conductivity and only for a special class of systems
[12].

The theory of transport coefficients developed in
Refs. [3,6,7] applies to continuum systems. It cannot be
directly applied to lattice systems because it assumes certain
scaling relations for electric and energy currents which
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do not hold on a lattice. (In fact, they do not hold for
interacting continuum systems either, except after some
spatial averaging [6]). An even more basic issue is the lack of
an accepted definition of charge and energy current densities
on a lattice. Many expositions of linearized transport theory
(see, e.g., Refs. [4,5]) derive only the expressions for the
volume-averaged current densities. However, in order to
define transport coefficients, one needs to separate currents
into transport and magnetization contributions [6,7]. Such a
separation does not make sense for volume-averaged currents.

Since tight-binding models and other lattice Hamiltonians
are ubiquitous in theoretical condensed matter physics, it is
important to develop a formalism for describing currents of
conserved quantities in such systems. In fact, such a formal-
ism has been described by A. Kitaev many years ago [13],
but it is rarely applied to transport theory. In our recent work
we used it to prove a Bloch theorem for energy currents
[14] and to derive Kubo-type formulas for the electric Hall
conductivity and thermal Hall conductivity of general lattice
systems [15]. In this paper, use the same approach to derive
microscopic formulas for thermoelectric coefficients of gen-
eral lattice systems.

The main results of the paper are as follows. Our formulas
for the symmetric parts of conductivity and thermal conduc-
tivity tensors [15] are completely analogous to continuum
formulas. Surprisingly, this not the case for the symmetric
parts of thermoelectric tensors. In general, microscopic for-
mulas for them contain local terms as well as the expected
Kubo term. We show that these extra terms are in fact required
to ensure that transport coefficients are unaffected by the am-
biguities in the definition of the microscopic energy density.
We also show that in special cases, such as systems of free par-
ticles or systems with only density-dependent interactions, the
additional terms vanish with a natural definition of currents.

The skew-symmetric parts of all transport tensors except
conductivity contain contributions from magnetizations. Since
magnetizations are defined only up to additive constants, this
leads to ambiguities. In the case of thermal conductivity, a
way to resolve the ambiguities on a lattice was described in
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found in many textbooks and monographs [4,5], there are a
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ated by now that naive Kubo formulas for skew-symmetric
parts of the transport tensors must be supplemented with
additional terms involving magnetization and “energy mag-
netization” [6]. Such terms affect thermal Hall conductivity
and the skew-symmetric parts of thermoelectric coefficients.
Since magnetizations are intrinsically ambiguous, it is not
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density. One might expect that transport coefficients, being
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as far as we know this has been demonstrated only for the
thermal conductivity and only for a special class of systems
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(see, e.g., Refs. [4,5]) derive only the expressions for the
volume-averaged current densities. However, in order to
define transport coefficients, one needs to separate currents
into transport and magnetization contributions [6,7]. Such a
separation does not make sense for volume-averaged currents.

Since tight-binding models and other lattice Hamiltonians
are ubiquitous in theoretical condensed matter physics, it is
important to develop a formalism for describing currents of
conserved quantities in such systems. In fact, such a formal-
ism has been described by A. Kitaev many years ago [13],
but it is rarely applied to transport theory. In our recent work
we used it to prove a Bloch theorem for energy currents
[14] and to derive Kubo-type formulas for the electric Hall
conductivity and thermal Hall conductivity of general lattice
systems [15]. In this paper, use the same approach to derive
microscopic formulas for thermoelectric coefficients of gen-
eral lattice systems.

The main results of the paper are as follows. Our formulas
for the symmetric parts of conductivity and thermal conduc-
tivity tensors [15] are completely analogous to continuum
formulas. Surprisingly, this not the case for the symmetric
parts of thermoelectric tensors. In general, microscopic for-
mulas for them contain local terms as well as the expected
Kubo term. We show that these extra terms are in fact required
to ensure that transport coefficients are unaffected by the am-
biguities in the definition of the microscopic energy density.
We also show that in special cases, such as systems of free par-
ticles or systems with only density-dependent interactions, the
additional terms vanish with a natural definition of currents.

The skew-symmetric parts of all transport tensors except
conductivity contain contributions from magnetizations. Since
magnetizations are defined only up to additive constants, this
leads to ambiguities. In the case of thermal conductivity, a
way to resolve the ambiguities on a lattice was described in
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• Use this formalism to show that the “energy

magnetization” corrections do not have an

enhancement as �ph ! 0.

• Thermal Hall response can be computed by

direct application of Kubo formula



Feynman diagrams
• Solid line: phonon Green’s 

function

• Dashed line: defect Green’s 

function

• (a) phonon-interband coherence, 

similar to electron side jump

• (b) phonon-defect coherence, 

unique to energy transport and 
single-phonon process

• Perturb in phonon-defect coupling 

constant

Side Jump: Exactly one pair of 
of identical argument, yielding a factor of  

𝐷𝑅(𝜔)𝐷𝐴(𝜔)
1/Γ
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• (a) phonon-interband coherence, 

similar to electron side jump

• (b) phonon-defect coherence, 

unique to energy transport and 
single-phonon process

• Perturb in phonon-defect coupling 

constant

Skew scattering: fourth order in phonon-defect 
coupling, yielding a factor of 2 1/Γ



1. Spin-phonon model  

2. Theory


3. Thermal Hall response


4. Metallic spin ice


5. Cuprates



Thermal Hall co-efficient Model A
<latexit sha1_base64="KPtLEvR6dMnVP12bN6Y+5ARzmUk=">AAADWnicdVJbb9MwFE5aLlvHZQPeeDliQ9rEKEnZBjwgTQyJSSA0pO4iLV3kOKeNNdsJtgOrLP8hfg2vQ/wXcNsgdQiOZOVcvu8cny/OKs60iaLLsNW+dv3GzYXFztKt23fuLq/cO9JlrSge0pKX6iQjGjmTeGiY4XhSKSQi43icne9N6sdfUGlWyr4ZVzgQZCTZkFFifCpdCfeSDEdMWorSoHKdfgkaaSlzKFWOCpiEtfepZQnhVUHc2iaYAidHCcJhn3AOCnVVSo3AdKfphp/r6QDXgakl56SqSLoPr+EpJENFqBXO7kBSMfiY2kQJ0GPtXLLZVD3lLXJDzrbATYJ3RAiS2qpw0D/rQaKZLNZnkGf9DQcJx6FZn3FjZ2n6wcETmIv7HqPYqDAbDdYvdRE78J9xz/lbTeLeLI7nsLKUtchQdRKU+dxe07ARLV1ejbpxHMVbEUTdaGreefV8J463IW4yq0FjB+nyryQvaS08nXKi9WkcVWZgiTKMcvTNa40VoedkhKfelUSgHtjp33bw2GdyGJbKH2lgmp1nWCK0HovMIwUxhf67Nkn+q3Zam+HLgWWyqg1KOhs0rDmYEiZPB3KmkBo+9g6hivm7Ai2IV9hr4Dtp9K9PjkxhE4MX5ivL/Ry73d1m8spGNhMTxf7IAv93jnrdeKe79am3uvum0W4heBg8CtaDOHgR7Ab7wUFwGNDwW/g9vAx/tH62W+3F9tIM2gobzv3girUf/AY5mREJ</latexit>

To second order in Ki↵, the thermal Hall response is
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Abstract

It has become common knowledge that phonons can generate thermal Hall e↵ect in a wide va-

riety of materials, although the underlying mechanism is still controversial. We study longitudinal

xx and transverse xy thermal conductivity in Pr2Ir2O7, which is a metallic analogue of spin

ice. Despite the presence of mobile charge carriers, we find that both xx and xy are dominated

by phonons. A T/H scaling of xx unambiguously reveals that longitudinal heat current is sub-

stantially impeded by resonant scattering of phonons on paramagnetic spins. Upon cooling, the

resonant scattering is strongly a↵ected by a development of spin ice correlation and xx deviates

from the scaling in an anisotropic way with respect to field directions. Strikingly, a set of the xx

and xy data clearly shows that xy correlates with xx in its response to magnetic field including a

success of the T/H scaling and its failure at low temperature. This remarkable correlation provides

solid evidence that an indispensable role is played by spin-phonon scattering not only for hindering

the longitudinal heat conduction, but also for generating the transverse response.
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It has become common knowledge that phonons can gen-
erate thermal Hall e↵ect in a wide variety of materials, al-
though the underlying mechanism is still controversial. We
study longitudinal xx and transverse xy thermal conductiv-
ity in Pr2Ir2O7, which is a metallic analogue of spin ice. De-
spite the presence of mobile charge carriers, we find that both
xx and xy are dominated by phonons. A T/H scaling of
xx unambiguously reveals that longitudinal heat current is
substantially impeded by resonant scattering of phonons on
paramagnetic spins.

Upon cooling, the resonant scattering is strongly a↵ected by a
development of spin ice correlation and xx deviates from the
scaling in an anisotropic way with respect to field directions.
Strikingly, a set of the xx and xy data clearly shows that xy

correlates with xx in its response to magnetic field including
a success of the T/H scaling and its failure at low tempera-
ture. This remarkable correlation provides solid evidence that
an indispensable role is played by spin-phonon scattering not
only for hindering the longitudinal heat conduction, but also
for generating the transverse response.
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FIG.1. (a) Temperature dependence of zero-field longitudinal thermal conductivity xx

for the heat current Q parallel to the (001) plane together with those of the pyrochlore

compounds [31–33]. Inset shows a xx vs T plot in a logarithmic scale for Q k (001) and

Q k (111). The electronic contribution L0�xxT in xx estimated by using the Wiedemann-

Franz law is also shown for the electrical current j parallel to the (001) and (111) planes.

Magnetic field dependence of longitudinal thermal conductivity normalized by the zero-field

value {xx(H)� xx(0)}/xx(0) at di↵erent temperatures under the magnetic fields parallel

to the [111] (b) and [001] (c) directions. Inset of panel (b) depicts a Hmin vs T plot for

H k [111] and H k [001]. A zoom of the low field region for the H k [001] data is shown

in the inset of panel (c). (d) Temperature dependence of {xx(H) � xx(0)}/xx(0) at H

= 9 T for H k [111] and H k [001]. Temperature dependence of the longitudinal electrical

resistivity ⇢xx at zero field is shown in the inset. (e) The calculated {xx(H)�xx(0)}/xx(0)

as a function of h/J with various values of T/J for H k [001], where h is external magnetic

field and J is nearest-neighbor interaction between Pr doublets.
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• Assume �ph is dominated by spin-phonon
scattering. Resonant scattering at 4th-order
in spin-phonon coupling yields �ph ⇠ �4/3

• Then

xy ⇠ �8/3

T 2 sinh(�/T )



Haoyu Guo

0.5 1.0 1.5 2.0 2.5 3.0 3.5
H/T(SI)

0.2

0.4

0.6

0.8

1.0

κxy/κxy,max

2.6K

3.8K

4.1K

5.1K

7.0K

�� = 2.482(H/T ) Pr
3+
ion

Pr2Ir2O7

V
L

o
B

B
KL

qo
q, o q o

B

B
IJ
(k) = i"

ijl
k
l
.

u

�H Ho

�J
E

po
= ��J

E

op
=

�

2

�
⇣
T
hJpBV + ⇣

T
phJBV

�
.

�J
E
(�↵) =

�

2
⇣
T
(hJ [B,↵] + [hJB,↵])V ,

f�J
E
g � g�J

E
f = �⇣

T
(hJ(fBg � gBf) + (fhJBg � ghJBf))V .

D = D0 + �
2
D0BS0B

T
D0| {z }

K0

.

No fitting parameters!



1. Spin-phonon model  

2. Theory


3. Thermal Hall response


4. Metallic spin ice


5. Cuprates



  Giant thermal Hall signal in cuprates

G. Grissonnanche et al. Nature 571, 376–380 (2019)



Violation of Wiedemann–Franz law

G. Grissonnanche et al. Nature 571, 376–380 (2019)



Experiment points to Phonons

G. Grissonnanche et al. Nat. Phys. 16, 1108–1111 (2020)



Thermal Hall in various materials

Electron-doped Cuprate Antiferromagnetic Insulator Hole-doped Cuprate
G. Grissonnanche et al. Nature 571, 376–380 
(2019)

Lu Chen et al. arXiv:2110.13277M. Boulanger et al. arXiv:2112.09187


