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e LF'ield is oriented along the ‘2z’ direc-
tion. 'This could be any direction
relative to the crystal.

e The antiferromagnetic order will ori-
ent perpendicular to the field.

e We focus on an impurity spin mo-
ment o. The local field on o is as-

sumed to be along the ‘3’ direction.
Note that in general ‘2z’ # ‘3.




Spin-phonon Hamiltonian
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1, ] = x,vy, 2z are Cartesian mdlces p, q are site indices.
* is phonon displacement. 7Tp 1s phonon momentum.
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* is phonon displacement. 7Tp 1s phonon momentum.
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H 4is leads to a phonon lifetime 1',;, < T'.
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The ‘3’ axis sets the orientation of the local field.



Spin-phonon Hamiltonian
Model B
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1,7 = x, vy, 2z are indices oriented by the external field along the ‘2z’ axis.

o = 1,2,3 is an index oriented the local field along the ‘3’ axis.

K;q arises from bond-length dependence of exchange interactions,
in the presence of background magnetic order.



Spin-phonon Hamiltonian
Model B

_ J o
thonon—imp — Kijoz 8@“

1mp o

1,7 = x, vy, 2z are indices oriented by the external field along the ‘2z’ axis.
o = 1,2,3 is an index oriented the local field along the ‘3’ axis.

K;q arises from bond-length dependence of exchange interactions,
in the presence of background magnetic order.

Model A

thonon—imp — DNja MTimp O

Analog to Rashba term in the presence of spin-orbit coupling
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Heat bath

Heater
G. Grissonnanche et al. Nature 571, 376-380 (2019)



Microscopic formulas for thermoelectric transport coefficients in lattice systems

Anton Kapustin™ and Lev Spodyneiko®"
California Institute of Technology, Pasadena, California 91125, USA

PHYSICAL REVIEW B 104, 035150 (2021)

- Hamiltonian on a lattice A can be decomposed into local terms

(1-chain)
I — ZH H, H,|]=0for |p—q| >R
peEA

* Energy current found from Heisenberg equation (2-chain)
J]ﬁ] — _i[Hvaq]

» Current between two regionsAB: AuUuB=A ANnB=10

JP(A,B)= )

pEA,gEB



Microscopic formulas for thermoelectric transport coefficients in lattice systems

Anton Kapustin™ and Lev Spodyneiko®"
California Institute of Technology, Pasadena, California 91125, USA

PHYSICAL REVIEW B 104, 035150 (2021)

e Use this formalism to show that the “energy
magnetization” corrections do not have an
enhancement as I',;, — 0.

e Thermal Hall response can be computed by
direct application of Kubo formula



Feynman diagrams

» Solid line: phonon Green’s
function

 Dashed line: defect Green'’s
function

* (a) phonon-interband coherence,
similar to electron side jump

* (b) phonon-defect coherence,

unique to energy transport and
single-phonon process

* Perturb in phonon-defect coupling
constant

" W TF gk £il/2

Side Jump: Exactly one pair of D®(w) D*(w)
of identical argument, yielding a factor of 1/1"



Feynman diagrams

» Solid line: phonon Green’s
function

 Dashed line: defect Green'’s
function

* (a) phonon-interband coherence,
similar to electron side jump

* (b) phonon-defect coherence,

unique to energy transport and
single-phonon process

* Perturb in phonon-defect coupling
constant

1
DA (b k) =
ot (W, F) W F cok £ iI'/2
S‘fin
4yt
fumw\m

Skew scattering: fourth order in phonon-defect
coupling, yielding a factor of 1/12



|. Spin-phonon model

2. Theory

3. Thermal Hall response

4. Metallic spin ice

5. Cuprates



Thermal Hall co-efficient Model A

To second order in Kj;,, the thermal Hall response is

m A4 (1 1

| KKy — KoK
67TNSyS thT2 Slnh(A/T) Cr, CT> ( 12 ° yl)

R —



Thermal Hall co-efficient Model B

To second order in K., the thermal Hall response is

1 A4

—3 —3
_ K K
307mNays TpnT2 sinh(A/T) (€L K+ ep"Kr)

K H



Thermal Hall co-efficient Model B

lo second order in Kj;,, the thermal Hall response 1s

1 A4 .
= KL+ e’ K h
" 30mmNgys I'pp T sinh(A/T) (cL”Kr +cp’Kr) , where
5
Kt == 5 [(Koa1 = Kyy) (Kayz + Kya2) = (Kawz = Kyy2) (Kayt + Kya)
1
- 5 (Kot + K1) (Kayz — Kyoz) = (Koo + Kyypo) (Kayt — Kyan)
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Phonon thermal Hall effect in a metallic spin ice

arX1v:2202.12149
Taiki Uehara,! Takumi Ohtsuki,? Masafumi Udagawa,’

Satoru Nakatsuji,>#>* and Yo Machida'

It has become common knowledge that phonons can gen-
erate thermal Hall effect in a wide variety of materials, al-
though the underlying mechanism is still controversial. We
study longitudinal x,, and transverse k., thermal conductiv-
ity in ProlroO7, which is a metallic analogue of spin ice. De-
spite the presence of mobile charge carriers, we find that both
Kye and k., are dominated by phonons. A T/H scaling of
k.o unambiguously reveals that longitudinal heat current is
substantially impeded by resonant scattering of phonons on
paramagnetic spins.



Phonon thermal Hall effect in a metallic spin ice

arX1v:2202.12149
Taiki Uehara,! Takumi Ohtsuki,? Masafumi Udagawa,’

Satoru Nakatsuji,>#>* and Yo Machida'
Upon cooling, the resonant scattering is strongly affected by a

development of spin ice correlation and k., deviates from the
scaling in an anisotropic way with respect to field directions.
Strikingly, a set of the k., and k,, data clearly shows that K,
correlates with k., In its response to magnetic field including
a success of the T'/H scaling and its failure at low tempera-
ture. This remarkable correlation provides solid evidence that
an indispensable role is played by spin-phonon scattering not
only for hindering the longitudinal heat conduction, but also
for generating the transverse response.
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e Assume I'),; is dominated by spin-phonon
scattering. Resonant scattering at 4th-order
1n spin-phonon coupling yields '), ~ A?/3

e [hen
AS/S

Y ™ T2 ginh(A/T)
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FIG. 1: Comparison between experiment from Fig.4(b) of |7|, and our theory Eq.(11.16). The
theoretical curve is plotted with SA = 2.482(H/T) (magnetic moment of free Pr**ion) in SI

units, computed from microscopic data of PrslroO-.
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Giant thermal Hall signal in cuprate

a 100

JOzr = —KgyOyT

Heat bath

Heater

G. Grissonnanche et al. Nature 571, 376-380 (2019)

T(K)

Ky, /T (MW K2 m-)

75

50

ol 1

m Nd-LSCO
e Eu-LSCO
A LSCO

-

0.3

| H=15T

|-05
® Nd-LSCO p=0.20
® Eu-LSCO p=0.08
e LSCO p=0.06
. L32CUO4 p o 0 . _1
30 ' 60 | 90

T (K)

)

Ax
ac

(/201



Violation of Wiedemann—Franz law

Violates Wiedemenn-Franz law for p < p,

It has the opposite sign to o,

So the mysterious heat carrier isn’t charged

It appears outside the AF phase

5o 1t’s not due to magnons

- . 1 . .
03¢} Eu-LSCO 1 LSCO
=0.08 =0.06

‘ Emergent excitation or phonons?

60 90
T(K) T (K)

G. Grissonnanche et al. Nature 571, 376-380 (2019)



Experiment points to Phonons

J//a .
a : b x
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ké Extended Data Fig. 1| Current and field orientation for k, and x,, measurements. Sketch of the thermal Hall measurement setup fora) J // a // -x and b)
J// ¢ // z. The Cartesian coordinate system is defined in the same way for the two samples.
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Only phonons can move in z-direction
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G. Grissonnanche et al. Nat. Phys. 16, 1108—-1111 (2020)
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Thermal Hall in various materials
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M. Boulanger et al. arXiv:2112.09187
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Lu Chen et al. arXiv:2110.13277
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