Resonant "side-jump" thermal Hall effect of phonons coupled to dynamical defects

May 4, 2022

Subir Sachdev

Talk online: sachdev.physics.harvard.edu

CIFAR Quantum Materials Program Meeting

INSTITUTE FOR ADVANCED STUDY

Haoyu Guo PHYSICAL REVIEW B 103, 205115 (2021)

Extrinsic phonon thermal Hall transport from Hall viscosity

Haoyu Guo and Subir Sachdev Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

Darshan Joshi

arXiv:2201.11681

I. Spin-phonon model

2. Theory

3. Thermal Hall response

4. Metallic spin ice

5. Cuprates

Model B

• Field is oriented along the 'z' direction. This could be any direction relative to the crystal.

Model B

- Field is oriented along the 'z' direction. This could be any direction relative to the crystal.
- The antiferromagnetic order will orient perpendicular to the field.

Model B

- Field is oriented along the 'z' direction. This could be any direction relative to the crystal.
- The antiferromagnetic order will orient perpendicular to the field.
- We focus on an impurity spin moment $\boldsymbol{\sigma}$. The *local* field on $\boldsymbol{\sigma}$ is assumed to be along the '3' direction. Note that in general $z' \neq 3'$.

Spin-phonon Hamiltonian

$$\frac{i_p \pi_p^i}{m} + \frac{1}{2} \sum_{pq} u_p^i C_{pq}^{ij} u_q^j + H_{\text{dis}} \,.$$

i, j = x, y, z are Cartesian indices. p, q are site indices. u_p^i is phonon displacement. π_p^i is phonon momentum. $H_{\rm dis}$ leads to a phonon lifetime $\Gamma_{ph} \ll T$.

Spin-phonon Hamiltonian

Η

$$\frac{i_{p}\pi_{p}^{i}}{2m} + \frac{1}{2}\sum_{pq}u_{p}^{i}C_{pq}^{ij}u_{q}^{j} + H_{dis}$$

i, j = x, y, z are Cartesian indices. p, q are site indices. u_p^i is phonon displacement. π_p^i is phonon momentum. $H_{\rm dis}$ leads to a phonon lifetime $\Gamma_{ph} \ll T$.

$$imp = -\frac{\Delta}{2}\sigma^3.$$

The '3' axis sets the orientation of the *local* field.

Spin-phonon Hamiltonian Model B

 $H_{\rm phonon-imp} = K_{ij\alpha} \ \partial_i u^j_{\rm imp} \ \sigma^{\alpha}$.

i, j = x, y, z are indices oriented by the *external* field along the 'z' axis. $\alpha = 1, 2, 3$ is an index oriented the *local* field along the '3' axis. $K_{ij\alpha}$ arises from bond-length dependence of exchange interactions, in the presence of background magnetic order.

Spin-phonon Hamiltonian Model B

 $H_{\rm phonon-imp} = K_{ij\alpha} \ \partial_i u^j_{\rm imp} \ \sigma^{\alpha}$.

i, j = x, y, z are indices oriented by the *external* field along the 'z' axis. $\alpha = 1, 2, 3$ is an index oriented the *local* field along the '3' axis. $K_{ij\alpha}$ arises from bond-length dependence of exchange interactions, in the presence of background magnetic order.

Model A

 $H_{\rm phonon-imp} = K_{i\alpha} \pi^{i}_{\rm imp} \sigma^{\alpha}$.

Analog to Rashba term in the presence of spin-orbit coupling

I. Spin-phonon model

2. Theory

3. Thermal Hall response

4. Metallic spin ice

5. Cuprates

 $J_{Qx} = -\kappa_{xy}\partial_y T$

Heater

G. Grissonnanche et al. Nature 571, 376–380 (2019)

Microscopic formulas for thermoelectric transport coefficients in lattice systems

Anton Kapustin^{*} and Lev Spodyneiko[†] California Institute of Technology, Pasadena, California 91125, USA PHYSICAL REVIEW B 104, 035150 (2021)

(1-chain)

$$H = \sum_{p \in \Lambda} H_p \qquad [H_p, H_q] = 0 \text{ for } |p - q| > R$$

- Energy current found from Heisenberg equation (2-chain) $J_{pq}^E = -i[H_p, H_q]$

$$J^{E}(A, B) = \sum_{p \in A, q \in B} J^{E}_{pq}$$

- Hamiltonian on a lattice $\Lambda\,$ can be decomposed into local terms

• Current between two regions A,B: $A \cup B = \Lambda$ $A \cap B = \emptyset$

Microscopic formulas for thermoelectric transport coefficients in lattice systems

Anton Kapustin^{*} and Lev Spodyneiko[†] California Institute of Technology, Pasadena, California 91125, USA PHYSICAL REVIEW B 104, 035150 (2021)

• Use this formalism to show that the "energy magnetization" corrections do not have an enhancement as $\Gamma_{ph} \to 0$.

• Thermal Hall response can be computed by direct application of Kubo formula

Feynman diagrams

- Solid line: phonon Green's function
- Dashed line: defect Green's function
- (a) phonon-interband coherence, similar to electron side jump
- (b) phonon-defect coherence, unique to energy transport and single-phonon process
- Perturb in phonon-defect coupling constant

Side Jump: Exactly one pair of $D^{R}(\omega)D^{A}(\omega)$ of identical argument, yielding a factor of $1/\Gamma$

Feynman diagrams

- Solid line: phonon Green's function
- Dashed line: defect Green's function
- (a) phonon-interband coherence, similar to electron side jump
- (b) phonon-defect coherence, unique to energy transport and single-phonon process
- Perturb in phonon-defect coupling constant

$$D_{a\pm}^{R/A}(\omega,k) = \frac{1}{\omega \mp c_a k \pm i\Gamma/k}$$

Skew scattering: fourth order in phonon-defect coupling, yielding a factor of $1/\Gamma^2$

I. Spin-phonon model

2. Theory

3. Thermal Hall response

4. Metallic spin ice

5. Cuprates

Thermal Hall <u>co-efficient</u>

To second order in $K_{i\alpha}$, the thermal Hall response is

Model A

$\kappa_H = -\frac{m}{6\pi N_{\rm sys}} \frac{\Delta^4}{\Gamma_{ph} T^2 \sinh(\Delta/T)} \left(\frac{1}{c_L} + \frac{1}{c_T}\right) \left(K_{x1} K_{y2} - K_{x2} K_{y1}\right)$

Thermal Hall co-efficient

To second order in $K_{ij\alpha}$, the thermal Hall response is

$\kappa_H = \frac{1}{30\pi m N_{\rm sys}} \frac{\Delta^4}{\Gamma_{ph} T^2 \sinh(\Delta/T)} \left(c_L^{-3} K_L + c_T^{-3} K_T \right)$

Model B

Thermal Hall co-efficient

 $\kappa_H = \frac{1}{30\pi m N_{\rm sys}} \frac{\Delta^4}{\Gamma_{ph} T^2 \sinh(\Delta t)}$ $K_T = -\frac{5}{2} \left[\left(K_{xx1} - K_{yy1} \right) \left(K_{xy2} + K_{yy1} \right) \right]$ $+\frac{1}{2}\left[\left(K_{xx1}+K_{yy1}\right)\left(K_{xy2}-K_{y}\right)\right]$ $+K_{zz1}(K_{yx2}-K_{xy2})+K_{zz2}($ $-K_{zx1}K_{zy2} + K_{zx2}K_{zy1}$,

 $K_L = -2(K_{xx1} - K_{yy1})(K_{xy2} + R_{yy1})$ $-(K_{xz1}+K_{zx1})(K_{yz2}+K_{z})$

Model B

To second order in $K_{ij\alpha}$, the thermal Hall response is

$$\overline{\Delta/T} \left(c_L^{-3} K_L + c_T^{-3} K_T \right), \text{ where}$$

$$\overline{A}(yx^2) - \left(K_{xx2} - K_{yy2} \right) \left(K_{xy1} + K_{yx1} \right) \right]$$

$$\overline{A}(yx^2) - \left(K_{xx2} + K_{yy2} \right) \left(K_{xy1} - K_{yx1} \right) \right]$$

$$\overline{A}(K_{xy1} - K_{yx1}) - 4K_{xz1}K_{yz2} + 4K_{xz2}K_{yz2} + 4K_{xz2}K_{yz2}$$

$$K_{yx2} + 2(K_{xx2} - K_{yy2})(K_{xy1} + K_{yx1}) + (K_{xz2} + K_{zx2})(K_{yz1} + K_{zy1}).$$

I. Spin-phonon model

2. Theory

3. Thermal Hall response

4. Metallic spin ice

5. Cuprates

Phonon thermal Hall effect in a metallic spin ice arXiv:2202.12149 Taiki Uehara,¹ Takumi Ohtsuki,² Masafumi Udagawa,¹ Satoru Nakatsuji,^{2,3,4} and Yo Machida¹ It has become common knowledge that phonons can generate thermal Hall effect in a wide variety of materials, although the underlying mechanism is still controversial. We study longitudinal κ_{xx} and transverse κ_{xy} thermal conductivity in $Pr_2Ir_2O_7$, which is a metallic analogue of spin ice. Despite the presence of mobile charge carriers, we find that both κ_{xx} and κ_{xy} are dominated by phonons. A T/H scaling of κ_{xx} unambiguously reveals that longitudinal heat current is substantially impeded by resonant scattering of phonons on

paramagnetic spins.

Phonon thermal Hall effect in a metallic spin ice arXiv:2202.12149

Taiki Uehara,¹ Takumi Ohtsuki,² Masafumi Udagawa,¹

Satoru Nakatsuji,^{2,3,4} and Yo Machida¹

Upon cooling, the resonant scattering is strongly affected by a development of spin ice correlation and κ_{xx} deviates from the scaling in an anisotropic way with respect to field directions. Strikingly, a set of the κ_{xx} and κ_{xy} data clearly shows that κ_{xy} correlates with κ_{xx} in its response to magnetic field including a success of the T/H scaling and its failure at low temperature. This remarkable correlation provides solid evidence that an indispensable role is played by spin-phonon scattering not only for hindering the longitudinal heat conduction, but also for generating the transverse response.

• Assume Γ_{ph} is dominated by spin-phonon scattering. Resonant scattering at 4th-order in spin-phonon coupling yields $\Gamma_{ph} \sim \Delta^{4/3}$

• Then

Haoyu Guo

 $\kappa_{xy} \sim \frac{\Delta^{8/3}}{T^2 \sinh(\Delta/T)}$

FIG. 1: Comparison between experiment from Fig.4(b) of [7], and our theory Eq.(11.16). The theoretical curve is plotted with $\beta \Delta = 2.482(H/T)$ (magnetic moment of free Pr³⁺ion) in SI units, computed from microscopic data of $Pr_2Ir_2O_7$.

I. Spin-phonon model

2. Theory

3. Thermal Hall response

4. Metallic spin ice

5. Cuprates

Giant thermal Hall signal in cuprates

 $J_{Qx} = -\kappa_{xy}\partial_y T$

G. Grissonnanche et al. *Nature* **571**, 376–380 (2019)

Violation of Wiedemann–Franz law

G. Grissonnanche et al. *Nature* **571**, 376–380 (2019)

- Violates Wiedemenn-Franz law for $p < p_*$
- It has the opposite sign to σ_{xy} So the mysterious heat carrier isn't charged
- It appears outside the AF phase
 - So it's not due to magnons

Emergent excitation or phonons?

Experiment points to Phonons

J // c // z. The Cartesian coordinate system is defined in the same way for the two samples

Only phonons can move in z-direction

G. Grissonnanche et al. Nat. Phys. 16, 1108–1111 (2020)

Thermal Hall in various materials

Lu Chen et al. *arXiv:2110.13277*

Antiferromagnetic Insulator

a 100

Hole-doped Cuprate

G. Grissonnanche et al. Nature 571, 376–380 (2019)

