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Fermi surface transformation at the pseudogap critical point of a cuprate superconductor

Yawen Fang, Gaé€l Grissonnanche, Anaélle Legros, Simon Verret, Francis Laliberté, Clément Collignon, Amirreza Ataei,
Maxime Dion, Jianshi Zhou, David Grat, M. J. Lawler, Paul Goddard, Louis Taillefer, and B. J. Ramshaw, arXiv:2004.01725

We use angle-dependent magnetoresistance (ADMR) to measure the Fermi surface of the cuprate Lal .6—xNd(Q 4SrxCuO4. Above the critical

doping p* —outside of the pseudogap phase—we find a Fermi surface that 1s in quantitative agreement with angle-resolved photoemission.
Below p*, however, the ADMR 1s qualitatively different, revealing a clear change in Fermi surface topology. We find that our data 1s most
consistent with a Fermi1 surface that has been reconstructed by a Q = (7t,7t) wavevector. While static Q = (7t,7t) antiferromagnetism 1is not found
at these dopings, our results suggest that this wavevector 1s a fundamental organizing principle of the pseudogap phase.
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Hidden magnetism at the pseudogap critical point of a high

temperature superconductor
Nature Physics doi: 10.1038/s41567-020-0950-5
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Quasi-static magnetism in the pseudogap state
of La2-xSrxCu(O4.
Temperature — doping phase diagram representing Tmin, the

temperature of the minimum 1n the sound velocity, at
different fields. Since superconductivity precludes the

observation of Tmin 1n zero-field, the dashed line (brown
area) represents the extrapolated Tmin(B=0). While not
exactly equal to the freezing temperature 7T (see Fig. 2),
T'min 1s closely tied to 71 and so 1s expected to have the

same doping dependence, including a peak around p = 0.12
in zero/low fields (ref. 2). Onset temperatures of charge
order are from ref. 33 (squares) and 35 (hexagons).



Hole doped cuprates

The remarkable underlying ground states of cuprate superconductors

Cyril Proust and Louis Taillefer, Annual Review Condensed Matter Physics 10, 409 (2019)
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Random t-| model
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We consider the hole-doped case, with no double occupancy.
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Why random and all-to-all couplings ?

Randomness is present in the real system.
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Why random and all-to-all couplings ?

Randomness is present in the real system.

Randomness self-averages (except for certain correlators in
spin-glass phase) — Green’s functions are the same on every site.

The pseudogap-Fermi liquid transition is primarily a small-to-large
Fermi surface transition: an analogous transition and
a Luttinger theorem can also be defined with all-to-all
randomness because the self-energy is local
(in the non-spin-glass phase).

Introducing randomness removes the “distractions” of
multiple competing orders

Averaging over many samples allows smoother and faster approach
to the thermodynamic limit from finite size studies.
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Dynamic spin susceptibility
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Evidence for a quantum critical point at p = p. =~ 0.3.

Spin glass order ¢ non-zero for p < p.
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Entanglement Entropy
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One particle energy distribution function
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where |\) are one-particle eigenstates of the ¢;;. In a Fermi liquid, the Luttinger
identity implies that AN (€) has a discontinuity at the free particle Fermi energy ep.
(D(€) is the Wigner semi-circle density of states.)



Dynamic spin susceptibility
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Dynamic spin susceptibility
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Critical spin susceptibility matches the large M SU(M) SYK model.
X (w) ~sgn(w) [1 — Cvy|w| + ...] has the ‘marginal’ sgn(w) form, with a linear w correction.

Shown is the numerical solution of SYK equations (SY, PRL 1993), after rescaling J.



Consequences of 2D-gravity for the dynamic spin susceptibility of SYK model

xp(w) =2, [0 X; [n)|” 6(hw — B + Eo), (at T = 0)
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Numerical solution of SYK equations (SY, PRL 1993), compared with conformal perturbation theory.
C is the co-efficient of the action for the ‘boundary graviton’ in holographic dual.
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Maria Tikhanovskaya, Haoyu Guo, S. Sachdey, G.Tarnopolsky, arXiv: 2010.09742, 2012.14449 cu/ J
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Maria Tikhanovskaya, Haoyu Guo, S. Sachdey, G.Tarnopolsky, arXiv: 2010.09742, 2012.14449 w/T



Consequences of 2D-gravity for the dynamic spin susceptibility of SYK model

xp(w) =2, [0 X; [n)|” 6(hw — B + Eo), (at T = 0)

h i h _
XL(z,u)Ntauah(2 * ) 1—vatanh(2 * ) — ...
Conformally (SL(2,R))

invariant result with
characteristic dissipative

time ~ h/(kBT)

—— Numerics |

--- Theory
A. Georges and O. Parcollet

PRB 59,5341 (1999)

Maria Tikhanovskaya, Haoyu Guo, S. Sachdey, G.Tarnopolsky, arXiv: 2010.09742, 2012.14449 w/T



Consequences of 2D-gravity for the dynamic spin susceptibility of SYK model

xp(w) =2, [0 X; [n)|” 6(hw — B + Eo), (at T = 0)

Correction from
the boundary
graviton

—— Numerics |

--- Theory

Maria Tikhanovskaya, Haoyu Guo, S. Sachdey, G. Tarnopolsky, arXiv: 2010.09742, 2012.14449 W / ik



The random t-J model has
e Spin glass order for p < p..
o Fermi liquid with Luttinger volume Fermi surface for p > p.

e Maxima in entropy, specific heat, and entanglement entropy
near p = P,

e SYK-Planckian criticality near p..

e ‘Marginal’ spin susceptibility near criticality, with boundary
graviton correction ‘observed’ in SU(2) model.



