
LS Cable, a South Korean company based in Anyang-si near Seoul, has ordered three
million metres of superconducting wire from US firm American Superconductor in 
Devens, Massachusetts. Jason Fredette, managing director of corporate 
communications at the company, says that LS Cable will use the wire to make about 20 
circuit kilometres of cable as part of a programme to modernize the South Korean 
electricity network starting in the capital, Seoul.
The superconducting wire is made using the ceramic compound yttrium barium copper 
oxide (YBCO), part of a family of 'high-temperature' superconducting ceramics that 
were first discovered in 1986.
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Similar theory applies to the pnictides, and leads to s± pairing.
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• The Hertz-Millis-Moriya procedure is valid in d = 3, but

breaks down strongly in d = 2. (cf. Abanov-Chubukov)

• In d = 2, the theory is strongly-coupled with a universal

coupling between the order parameter and the fermions. The

only dimensionless parameter is α = vy/vx.

• The 1/N expansion (N is the number of hot-spots) initially

appears to be a genus expansion (cf. Sung-Sik Lee), but even

this breaks down at 5 loops.

• There is a universal “log-squared” instability to unconven-

tional (i.e. d-wave like) superconductivity with a coupling of

order unity.

• There is a sub-dominant “log-squared” instability to a modu-

lated bond order, which locally has a Ising-nematic character.

M. A. Metlitski and S. Sachdev,
Physical Review B 82, 075127 (2010)

Results of RG analysis at 2+ loops
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M. A. Metlitski and S. Sachdev,
Physical Review B 82, 075127 (2010)

Need fermion Green’s functions on Fermi surface near hot spots:

G(ω, �p) ∼
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iω − vF (p�)p⊥
.

Near the hot spot we have vF ∼ Z ∼ p�. The pairing interaction
is enhanced at one loop by the factor
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where α = vy/vx is of order unity.
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The co-existence of 
spin density wave order 

and d-wave superconductivity
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Include the possibility of pairing in the metal.
And then compute the shift in the critical value

of the SDW transition, sc − s0c due to a non-zero ∆.



Compute the SDW susceptibility, χ, in the superconducting state.
As ∆ → 0, we find

χ(∆) = χ(0)− C|∆|

where C is a universal constant dominated by the vicinity of the
hot spots.

The weak-coupling theory with equivalent hotspots yields C =
0 - there is an exact cancellation of competition between SDW and
SC at the hot spots, and attraction between SDW and SC away
from the hot spot.
For inequivalent hot spots (as in pnictides, or with incommensurate
order in the cuprates) in weak-coupling theory, or in a strong-
coupling analysis, we generically find C > 0.
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G. Knebel, D. Aoki, and J. Flouquet, arXiv:0911.5223

Similar phase diagram for CeRhIn5



Similar phase diagram for the pnictides
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