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1.1 The greatest equation

A few years back, Physics World magazine had a reader poll to determine the Greatest
Equation Ever, and came up with a two-way tie between Maxwell’s equations

d«F =3, dF =0, (1.1)
and Euler’s equation
e +1=0. (1.2)

The remarkable appeal of Euler’s equation is that it contains in such a compact form the
five most important numbers, 0, 1, i, 7, e, and the three basic operations, +, x, °
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1.1 The greatest equation

A few years back, Physics World magazine had a reader poll to determine the Greatest
Equation Ever, and came up with a two-way tie between Maxwell’s equations

d+F =3, dF =0, (1.1)

and Euler’s equation
e +1=0. (1.2)
The remarkable appeal of Euler’s equation is that it contains in such a compact form the

five most important numbers, 0, 1, i, 7, e, and the three basic operations, +, x, ". But my
own choice would have been Maldacena’s equation

AdS = CFT, (1.3)

because this contains all the central concepts of fundamental physics: Maxwell’s equations,
to start with, and their non-Abelian extension, plus the Dirac and Klein-Gordon equations,
quantum mechanics, quantum field theory and general relativity.
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S.Sachdev: TASI 2010 (Baskaran 1987)
The Hubbard Model
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Outline

|. Quantum phase transitions of a semi-metal

Honeycomb lattice, Dirac fermions and
the Gross-Neveu model

2. Quantum critical transport
Self-duality and the AdS/CFT correspondence

3. Quantum impurities and AdS;
Quantum spin coupled to a CFT
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Honeycomb lattice

(describes graphene after adding long-range Coulomb interactions)
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The Hubbard Model
th i+ U (W _ %) (nw _ _> DA

In the limit of large U, and at a density of one particle per site,
this maps onto the Heisenberg antiferromagnet

Hap =Y Ji;jS$S§

1<)

where a = x, vy, 2

1
SHES 502;20356@5,

with % the Pauli matrices and
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Insulating
antiferromagnet
with Neel order

Dirac
semi-metal
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Honeycomb lattice at half filling. e

We define the unit length vectors jz

e; =(1,0) , er=(—1/2,V3/2) , e3=(-1/2,—V3/2).

(1)
Note that e; - e; = —1/2 for i # j, and e; + e; +e3 = 0.
We take the origin of co-ordinates of the honeycomb lattice at the
center of an empty hexagon. The A sublattice sites closest to the
origin are at e, e», and e3, while the B sublattice sites closest to
the origin are at —ey, —ep, and —es.
The reciprocal lattice is generated by the wavevectors

4 4 4
G, = — G, = — G = — 2
1 3 e , 2 3 e 3 3 e3 ( )

The first Brillouin zone is a hexagon whose vertices are given by

1 1 1
Q: = §(G2 —G3) , Q= §(G3 —G1) , Q3= g(Gl — G»),
(3)
and —Q1, —Q», and —Qs.
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We define the Fourier transform of the fermions by
ca(k) = > ca(r)e " (4)
r

and similarly for cg.
The hopping Hamiltonian is

Ho = —tz (C/]:\iaCBjoz CéjacAia) (5)
()

where o is a spin index. |f we introduce Pauli matrices 77 in
sublattice space (a = x, y, z), this Hamiltonian can be written as

Ho = /%CT(k){—t(COS(k-el)+cos(k-e2)+cos(k-e3))7X

+ t(sin(k -e1) + sin(k - e2) + sin(k - e3)>7'y} c(k) (6)

The low energy excitations of this Hamiltonian are near k ~ +£Q;.
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In terms of the fields near Q1 and —Q7, we define

Wata(k) = can(Q1 + k)

Vain(k) = can(—Q1 + k)

Vgiak) = cBa(Q1 + k)

Vpoalk) = cBa(—Q1 + k) (7)

We consider WV to be a 8 component vector, and introduce Pauli
matrices p? which act in the 1,2 valley space. Then the
Hamiltonian is

d2k o
Ho :/wa(k)(wykx+ v p ky)\ll(k), (8)

where v = 3t/2; below we set v = 1. Now define ¥ = WTp?77.
Then we can write the imaginary time Lagrangian as

/:f() — —I.W (CU’}/O + kxf)/l + ky’72) v (9)

where
Z __Z Z X

v =—p 1" N =p1 =17 (10)
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Graphene
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Semi-metal with

massless Dirac fermions

_Ql Brillouin zone




Exercise: Observe that L is invariant under the scaling
transformation x’ = xe™¢ and 7/ = 7e~¢. Write the Hubbard

interaction U in terms of the Dirac fermions, and show that it has
the tree-level scaling transformation U’ = Ue™*. So argue that all
short-range interactions are irrelevant in the Dirac semi-metal

phase.
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Exercise: Observe that L is invariant under the scaling
transformation x’ = xe™¢ and 7/ = 7e~¢. Write the Hubbard

interaction U in terms of the Dirac fermions, and show that it has
the tree-level scaling transformation U’ = Ue™*. So argue that all
short-range interactions are irrelevant in the Dirac semi-metal

phase.

Antiferromagnetism

We use the operator equation (valid on each site /):

1 1 2U ., U

Then we decouple the interaction via

exp (?Z/M‘Sfa) = /DJ,‘?(T) exp (—Z/dT %Jiaz — J2S?

(12)
We now integrate out the fermions, and look for the saddle point
of the resulting effective action for J7. At the saddle-point we find
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that the lowest energy Is achieved when the vector has opposite
orientations on the A and B sublattices. Anticipating this, we look
for a continuum limit in terms of a field ©? where

Ja=¢? , Jg=—¢° (13)

The coupling between the field ¢©? and the W fermions is given by

Z Jac,ao—aﬁc,g = (CZ\QJQBCAB — c;aagﬁc/gg)
— gpa\IJTTZJa\IJ = — VoV (14)

From this we motivate the low energy theory

L= \IJ%L@ v+ [(auépa) ‘I‘Sépaz} + Y (9032)2 — ATV p? oW
(15)
Note that the matrix p*c? commutes with all the v,; hence p*o?
Is a matrix in “flavor” space. This is the Gross-Neveu model, and
it describes the quantum phase transition from the Dirac
semi-metal to an insulating Néel state In mean-field theory, the

Sunday, December 19, 2010



Dirac semi-metal is obtained for s > 0 with (¢ = 0. The Néel
state obtains for s < 0, and we have ©? = Nyd,, (say), and so the
dispersion of the electrons is

wk = /K2 + N2N3 (16)

near the points Q. These form the conduction and valence
bands of the insulator.
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Dirac
semi-metal

Insulating
antiferromagnet
with Neel order
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From this we motivate the low energy theory

L=Vy,0,V+ % [((%903)2 + 59@32} — i (9032)2 — oWV
(15)
Note that the matrix p?c? commutes with all the v,; hence p*c?
Is a matrix in “flavor” space. This is the Gross-Neveu model, and
it describes the quantum phase transition from the Dirac
semi-metal to an insulating Néel state
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From this we motivate the low energy theory

L=Vy,0,V+ % [((%903)2 + Sgp‘ﬁ} — i (9032)2 — oWV
(15)
Note that the matrix p?c? commutes with all the v,; hence p*c?
Is a matrix in “flavor” space. This is the Gross-Neveu model, and
it describes the quantum phase transition from the Dirac
semi-metal to an insulating Néel state

Exercise: Perform a tree-level RG transformation on £. The
quadratic gradient terms are invariant under W' = Wet and

¢ = wet’2. Show that this leads to s’ = se?!. Thus s is a relevant
perturbation which drives the system into either the semi-metal or
antiferromagnetic insulator. The quantum critical point is reached
by tuning s to its critical value (= 0 at tree level). Show that the
couplings u and A are both relevant perturbations at this critical
point. Thus, while interactions are irrelevant in the Dirac
semi-metal (and in the insulator), they are strongly relevant at the
quantum-critical point.

Sunday, December 19, 2010



An analysis of this quantum critical point requires a RG analysis
which goes beyond tree-level. Such an analysis can be controlled in
an expansion in 1/N (where N is the number of fermion flavors) or
(3 — d) (where d is the spatial dimensionality. Such analyses show
that the couplings u and A reach a RG fixed point which describes
a conformal field theory (CFT).

An important result of such an analysis is the following structure in
the electron Green's function:

Iw + VKT + vk, T p*
(w? + vek2 + v2/<§)1_f'7/2

G(k,w) = <\I!(k,w); \IJT(k,w)> ~ (17)

where nn > 0 is the anomalous dimension of the fermion. Note that
this leads to a fermion spectral density which has no quasiparticle
pole: thus the quantum critical point has no well-defined
quasiparticle excitations.
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Insulating
antiferromagnet

with Neel order /\

() # 0

Dirac
semi-metal

Quantum phase transition described by a strongly-coupled
conformal field theory without well-defined quasiparticles
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Electrical transport
The conserved electrical current is
J, = —iVy, V. (1)

Let us compute its two-point correlator, K, (k) at a spacetime
momentum k,, at T = 0. At leading order, this is given by a one
fermion loop diagram which evaluates to

Kuv(k) = / d*p Tr [vu(ivapx + mp? o)y (ivs(ks + ps) + mp®o?)]
pv 873 (p2 + m2)((p + k)2 + m?)

D kok,\ 1 k2x(1 —
— (duu ,u2 ) / dx X( X) ] (2)
T K 0o /m?+ k2x(1 — x)

where the mass m = 0 in the semi-metal and at the quantum
critical point, while m = |ANp| in the insulator. Note that the

current correlation is purely transverse, and this follows from the
requirement of current conservation

kK, = 0. (3)
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Of particular interest to us is the Kgg component, after analytic
continuation to Minkowski space where the spacetime momentum
k, is replaced by (w, k). The conductivity is obtained from this
correlator via the Kubo formula
. —lw

o(w) = lllno WKoo(w, k). (4)
In the insulator, where m > 0, analysis of the integrand in Eq. (2)
shows that that the spectral weight of the density correlator has a
gap of 2m at k = 0, and the conductivity in Eq. (4) vanishes.
These properties are as expected in any insulator.
In the metal, and at the critical point, where m = 0, the fermionic
spectrum is gapless, and so is that of the charge correlator. The
density correlator in Eq. (2) and the conductivity in Eq. (4)
evaluate to the simple universal results

1w
4\/k2—w2
oc(lw) = 1/4. (5)

K()()(w, k) —

Going beyond one-loop, we find no change in these results in the
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semi-metal to all orders in perturbation theory. At the quantum
critical point, there are no anomalous dimensions for the conserved
current, but the amplitude does change yielding

KOO(wv k) = K

olw) = K, (6)

where K is a universal number dependent only upon the
universality class of the quantum critical point. The value of the
for the Gross-Neveu model is not known exactly, but can be
estimated by computations in the (3 — d) or 1/N expansions.

Sunday, December 19, 2010



Non-zero temperatures

At the quantum-critical point at one-loop order, we can set m = 0,
and then repeat the computation in Eq. (2) at T > 0. This only
requires replacing the integral over the loop frequency by a
summation over the Matsubara frequencies, which are quantized
by odd multiples of #T. Such a computation, via Eq. (4) leads to
the conductivity

Re[o(w)] = (2T In2) d(w) + 1tanh (lﬁ_) (7)

the imaginary part of o(w) is the Hilbert transform of

Re[o(w)] — 1/4. Note that this reduces to Eq. (5) in the limit

w > T. However, the most important new feature of Eq. (7)
arises for w < T, where we find a delta function at zero frequency
in the real part. Thus the d.c. conductivity is infinite at this order,
arising from the collisionless transport of thermally excited carriers.
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Electrical transport in a free-field theory for T > 0

w/T
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Collisions between carriers invalidate the form in Eq. (7) for the
density correlation function, and we instead expect the form
dictated by the hydrodynamic diffusion of charge. Thus for Ky,
Eq. (6) applies only for w > T, while

Dk?

Koo(w, k) = Xpe o o W< T (8)

Here x is the charge susceptibility (here it is the compressibility),
and D is the charge diffusion constant. These have universal
values in the quantum critical region:

C
x=CT | D:TD, (9)

where again C, and Cp are universal numbers. For the
conductivity, we expect a crossover from the collisionless critical
dynamics at frequencies w > T, to a hydrodynamic
collision-dominated form for w < T. This entire crossover is
universal, and is described by a universal crossover function

o(w) =Ks(w/T). (10)
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The result in Eq. (6) applies for w > T, and so
Ko(o0) = K. (11)

For the hydrodynamic transport, we apply the Kubo formula in
Eq. (4) to Eq. (8) and obtain

ICO'(O) — CXCD (12)

which is a version of Einstein's relation for Brownian motion.
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More generally, at T > 0, we do not expect K, to be
relativistically covariant, and so can only constrain it by spatial
isotropy and density conservation. These two constraints, along
with dimensional analyses, lead to the most general form

Ko (w, k) = /K2 — w2(P[,, KT (w, k) + PL, K (w, k)), (13)

where K57 are dimensionless functions of the arguments, and
depend upon w and the magnitude of the 2-vector k. Also PMTV and

P/ﬁy are orthogonal projectors defined by

Ph =Pl =Ph=0, P] =34 k/;/; P = (s p;f”) pT
(14)

with the indices 1,/ running over the 2 spatial components. Thus,

in the general case at T > 0, the full density and current responses

are described in terms of two functions K& 7 (k,w), representing

current fluctuations longitudinal and transverse to the momentum.

hese two functions are not entirely independent. At T > 0, we
expect all correlations to be smooth functions at kK = 0: this is
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because all correlations are expected to decay exponentially to zero
as a function of spatial separation. However, this is only possible
from (13) if we have the additional relation

K" (w,0) = K- w,0). (15)

The relations of the previous paragraph are completely general and
apply to any theory. We now compute the charge correlations by
the holographic Maxwell theory

1 1 ‘
Sen = 2 d*x\/—g —ZFabFab . (16)
4 | N
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Density correlations in the holographic
Maxwell theory

IIIlK()Q (w, k)/kQ
— — | T
1.2+ | | | |
f \ | | |
| Lo 3k
1r \ | \ ﬁ_ 1.0, 2.0, 3.0, 4.0
i \ | |
* \ \ \ \
0.87 \ \ \ \\
f \VWARR! \ \ IC
: \ \ \ \ Im
0.6 N\ \ \ L2 )2
ﬁ NN \ \
i N \ \
0.4+ \\ \ \\
0.2}
2 4 6 8 3w 10
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Density correlations in the holographic
Maxwell theory

ImKQ() (w, k)/kQ

0.

S5,

1.

0
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2
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The self-duality of the 4-dimensional Maxwell theory leads to the
simple and remarkable identity:

Kh(w, KT (w, k) = K? (17)

where K is a known pure number, independent of w and k. The
combination of (17) and (15) now fully determine the response
functions at zero momenta: KX (w,0) = K7 (w,0) = K.
Computing the conductivity from Eq. (4), we then have

o(w)=Ks(w/T) =K, (18)

i.e. the scaling function in Eq. (10) is independent of w and equal
to the value in Eq. (11). This result is an important surprise and
the result is a direct consequence of the self-duality of the U(1)
Maxwell theory on AdS,.
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Electrical transport in the holographic Maxwell theory

o

w/T
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Let us now go beyond the Maxwell theory, and include all possible
4-derivative terms

Sy = /d4X’v —8 {Oéle + OéQRabRab + (3 (F2)2 + 044F4 (]_9)
+ a5vaF3vaFcb T CV6'L-\)abcdFabl__Cd T CWRHbFaCFbC =+ CVSRFz}

where F?2 = F,,F3 F* = F3,Fb_F°,F9, and the «; are some
coupling constants. After using field redefinitions, and dropping
terms of order F* which do not influence the linear conductivity,

we obtain a form which has only one dimensionless constant ~ (L
is the radius of AdS,):

1 1 |
Suee = o7 [ d*xv/78 | =g FabF*® 47 1 ConcgFF<? | (20)
4 i _

where we have formulated the extra four-derivative interaction in
terms of the Weyl tensor C,py. Stability and causality constraints
on the effective theory restrict |y| < 1/12.

A generalized duality relation applies also to Syec. However this is
not a self-duality. The dual CFT has current correlation functions
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which were characterized by functions L’T(w, k) which are
distinct from those of the direct CFT K57 (w, k), and the
self-duality relation of Eq. (17) take the less restrictive form

KHw, KT (w, k) =K%, KT(w, k)K-(w, k) = K2 (21)

These duality relation determines the correlators of the dual CFT
in terms of the direct CFT, but do not fix the latter. Identical
relations apply under particle-vortex duality to the theory of
complex scalar field, and to SQED3. Determination of the
functions KX (w,0) = K7 (w,0) requires explicit computation using
the extended theory Syec.
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Electrical transport in the extended holographic theory

RekC., 1.4;—

K

1.2+

1.0 -

0.8 -

0.6 -
0.4 -

0.2 -

OO i | | | | | | | | | | | | | | | | | | | |
0.0 0.5 1.0 1.5 W 2.0

47’

Sunday, December 19, 2010



Lessons from AdS/CFT

» There are a large class of strongly interacting 2+1
dimensional quantum “nearly perfect” fluids which are able to
relax back to thermal equilibrium in a time of order h/(kg T).
They are “nearly perfect” because this relaxation time is the
shortest possible.
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Lessons from AdS/CFT

» There are a large class of strongly interacting 2+1
dimensional quantum “nearly perfect” fluids which are able to
relax back to thermal equilibrium in a time of order h/(kg T).
They are “nearly perfect’ because this relaxation time is the
shortest possible.

» The quasiparticle transport theory starts from the free theory
with an infinite thermal equilibration time, and includes the
effect of weak interactions using the Boltzmann equation.
Complementary to this is the quantum-critical transport
theory applicable for the shortest possible equilibration time of
order i/(kg T), which is the classical Einstein-Maxwell theory

on AdS4
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» There are a large class of strongly interacting 2+1
dimensional quantum “nearly perfect” fluids which are able to
relax back to thermal equilibrium in a time of order h/(kg T).
They are “nearly perfect’ because this relaxation time is the
shortest possible.

» The quasiparticle transport theory starts from the free theory
with an infinite thermal equilibration time, and includes the
effect of weak interactions using the Boltzmann equation.
Complementary to this is the quantum-critical transport
theory applicable for the shortest possible equilibration time of
order i/(kg T), which is the classical Einstein-Maxwell theory
on AdS4

» The Einstein-Maxwell theory exhibits collisionless dynamics for
w > T, and collision-dominated dynamics for w < T.
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Lessons from AdS/CFT

» There are a large class of strongly interacting 2+1
dimensional quantum “nearly perfect” fluids which are able to
relax back to thermal equilibrium in a time of order h/(kg T).
They are “nearly perfect’ because this relaxation time is the
shortest possible.

» The quasiparticle transport theory starts from the free theory
with an infinite thermal equilibration time, and includes the
effect of weak interactions using the Boltzmann equation.
Complementary to this is the quantum-critical transport
theory applicable for the shortest possible equilibration time of
order i/(kg T), which is the classical Einstein-Maxwell theory

on AdS4

» The Einstein-Maxwell theory exhibits collisionless dynamics for
w > T, and collision-dominated dynamics for w < T.

» All continuous global symmetries are represented by a
self-dual Einstein-Maxwell theory.
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» This emergent self-duality implies that, in systems with
particle-hole symmetry, o(w) is frequency-independent in the
Einstein-Maxwell theory and equal to the self-dual value
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» This emergent self-duality implies that, in systems with
particle-hole symmetry, o(w) is frequency-independent in the
Einstein-Maxwell theory and equal to the self-dual value

» For systems with particle-hole symmetry, a frequency
dependent conductivity is obtained upon considering
corrections to the effective Einstein-Maxwell theory. Stability
conditions on the effective theory strongly restrict the range of
frequency dependence.
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» This emergent self-duality implies that, in systems with
particle-hole symmetry, o(w) is frequency-independent in the
Einstein-Maxwell theory and equal to the self-dual value

» For systems with particle-hole symmetry, a frequency
dependent conductivity is obtained upon considering
corrections to the effective Einstein-Maxwell theory. Stability
conditions on the effective theory strongly restrict the range of
frequency dependence.

» Such quantum-critical fluids also have universal momentum
transport. By extending the scaling arguments to momentum
transport we would conclude that the ratio of the shear
viscosity to the entropy density 7/s should equal a universal
number characterizing the collision-dominated regime. This
number was computed In the Einstein-Maxwell theory by

Kovtun et al. and found to equal h/(4mkg). The shortest

nossible relaxation time implies that n is also the smallest

nossible and so these fluids are ‘nearly perfect’.
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the Gross-Neveu model

2. Quantum critical transport
Self-duality and the AdS/CFT correspondence
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3. Quantum impurities and AdS;
Quantum spin coupled to a CFT )

.
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Honeycomb lattice with vacancy.

At U = 0, find a zero energy quasi-bound state
with [¢(r)| ~ 1/r.
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Honeycomb lattice with vacancy.

At U = 0, find a zero energy quasi-bound state
with [¢(r)| ~ 1/r.

We represent the impurity by a localized fermion field x. (7).
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We represent the impurity by a localized fermion field x,(7). The
full theory is described by the partition function

z - / DU(r, 7)D?(r, 7)Dxa(7)

exp (—/dzrdTEGN —/dTLimp>

__ 1 u 2 -
Lon = V0V + 5 {(auépa)z T 59032} + Y (9032) — Ap?Wp*o?V
OXa
Limp — X:ry P KJX:&JZBXB Spa(r — 077_)
T
The fermion number ijon commutes with the Hamiltonian, and

the ground state is found in the sector XLXQ = 1.
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We represent the impurity by a localized fermion field x,(7). The
full theory is described by the partition function

z - / DU(r, 7)D?(r, 7)Dxa(7)

exp (—/dzrdTEGN —/dTﬁimp>

__ 1 u 2 -
Lon = V0V + 5 {(auépa)z T 59032} + Y (9032) — Ap?Wp*o?V
OXa
Limp — X:ry P KJX:&JZﬁXﬁ Spa(r — 077_)
T
The fermion number ijon commutes with the Hamiltonian, and

the ground state is found in the sector XLXQ = 1.

Exercise: Perform a tree-level RG transformation on LgN + Limp.
The quadratic gradient terms are invariant under W' = We and
o' = pet’2. Show that the coupling & is relevant perturbations at
the free field fixed point.
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We represent the impurity by a localized fermion field x,(7). The
full theory is described by the partition function

z - / DU(r, 7)D?(r, 7)Dxa(7)

exp (—/dzrdTEGN —/dTﬁimp>

__ 1 U __
EGN — nyu(‘)ﬂ\p 4 5 [(8M§03)2 + SQOaz} 4+ 2_4 (¢a2)2 . )\gpa\UpZUa\U
OXa
Limp = Xh— — KXboasxp ¢ (r=0,7)

The fermion number ijon commutes with the Hamiltonian, and

the ground state is found in the sector XLXQ = 1.

Under RG, we find that the coupling s flows to a fixed point value.

Then we have universal theory describing the dynamics near the
Impurity at the quantum-critical point between the semi-metal and

the insulating antiferromagnet.
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Quantum impurity coupled to a CFT

z _ /D\IJ(I‘, 7_)7)@&(1.7 T)DXQ(T) exp (—/der‘dT/:GN — /dTﬁimp)

OXa
Limp = Xb—o — EX&Tasxs " (r=0,7)

Yo: spinful localized fermion describing impurity
r: Hows to a fixed point Kk — K™.
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Quantum superspin coupled to SYM4

S = / d>rdr Loym + / dT Limp
mmp Xb 87' | ZXb ( 7‘( 77—))0 T U (¢I( 7T>)c X

S. Kachru, A. Karch, and S. Yaida, Phys. Rev. D 81, 026007 (2010)
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We holographically engineer a periodic lattice of localized fermionic impurities within a plasma
medium by putting an array of probe D5-branes in the background produced by N D3-branes.
Thermodynamic quantities are computed in the large N limit via the holographic dictionary. We then
dope the lattice by replacing some of the D5-branes by anti-D5-branes. In the large N limit, we determine
the critical temperature below which the system dimerizes with bond ordering. Finally, we argue that for
the special case of a square lattice our system is glassy at large but finite N, with the low temperature
physics dominated by a huge collection of metastable dimerized configurations without long-range order,
connected only through tunneling events.
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Common features

e The correlations of the impurity fermion, or impurity spin,
decay with a power-law in time, wtih non-trivial ‘impurity’
exponents.
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e The correlations of the impurity fermion, or impurity spin,
decay with a power-law in time, wtih non-trivial ‘impurity’
exponents.

e The impurity response to a uniform external field is char-
acterized by an impurity susceptiblity which has a Curie
form Yimp = C/T, where C is a non-trivial universal num-
ber This response is that of an ‘irrational’ free spin, because

C#S5(5+1)/3, with 25 an integer.
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Common features

e The correlations of the impurity fermion, or impurity spin,
decay with a power-law in time, wtih non-trivial ‘impurity’
exponents.

e The impurity response to a uniform external field is char-
acterized by an impurity susceptiblity which has a Curie
form Yimp = C/T, where C is a non-trivial universal num-
ber This response is that of an ‘irrational’ free spin, because

C#S5(5+1)/3, with 25 an integer.

e There is a finite ground state entropy, Simp, at T' = 0. This
entropy is also ‘irrational’ because Siynp # kp In(an integer).

The SYM case is related in the large N
limit to a AdS; geometry
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