
“Relativistic” quantum 
criticality and the 

AdS/CFT correspondence

HARVARD
sachdev.physics.harvard.edu

Indian Institute of Science, Bangalore, Dec 7, 2010

Lecture notes
arXiv:1010.0682 
arXiv: 1012.0299

Sunday, December 19, 2010



J. Polchinski: TASI 2010

Sunday, December 19, 2010



J. Polchinski: TASI 2010

Sunday, December 19, 2010



The Hubbard Model
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tij → “hopping”. U → local repulsion, µ → chemical potential

Spin index α =↑, ↓
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†
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†
iα = δijδαβ

ciαcjβ + cjβciα = 0

S.Sachdev: TASI 2010 (Baskaran 1987)
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 Honeycomb lattice
(describes graphene after adding long-range Coulomb interactions)
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In the limit of large U , and at a density of one particle per site,

this maps onto the Heisenberg antiferromagnet

HAF =

�

i<j

JijS
a
i S

a
j

where a = x, y, z,

S
a
i =

1

2
c
a†
iασ

a
αβciβ ,

with σ
a
the Pauli matrices and

Jij =
4t

2
ij

U
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U/t

 Dirac
semi-metal

Insulating 
antiferromagnet
with Neel order
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Honeycomb lattice at half filling.

We define the unit length vectors

e1 = (1, 0) , e2 = (−1/2,
√
3/2) , e3 = (−1/2,−

√
3/2).

(1)
Note that ei · ej = −1/2 for i �= j , and e1 + e2 + e3 = 0.
We take the origin of co-ordinates of the honeycomb lattice at the
center of an empty hexagon. The A sublattice sites closest to the
origin are at e1, e2, and e3, while the B sublattice sites closest to
the origin are at −e1, −e2, and −e3.
The reciprocal lattice is generated by the wavevectors

G1 =
4π

3
e1 , G2 =

4π

3
e2 , G3 =

4π

3
e3 (2)

The first Brillouin zone is a hexagon whose vertices are given by

Q1 =
1

3
(G2 − G3) , Q2 =

1

3
(G3 − G1) , Q3 =

1

3
(G1 − G2),

(3)
and −Q1, −Q2, and −Q3.
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We define the Fourier transform of the fermions by

cA(k) =
�

r

cA(r)e
−ik·r

(4)

and similarly for cB .

The hopping Hamiltonian is

H0 = −t

�

�ij�

�
c
†
AiαcBjα + c

†
BjαcAiα

�
(5)

where α is a spin index. If we introduce Pauli matrices τ a in

sublattice space (a = x , y , z), this Hamiltonian can be written as

H0 =

�
d
2
k

4π2
c
†
(k)

�
−t

�
cos(k · e1) + cos(k · e2) + cos(k · e3)

�
τ x

+ t

�
sin(k · e1) + sin(k · e2) + sin(k · e3)

�
τ y

�
c(k) (6)

The low energy excitations of this Hamiltonian are near k ≈ ±Q1.
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In terms of the fields near Q1 and −Q1, we define

ΨA1α(k) = cAα(Q1 + k)

ΨA2α(k) = cAα(−Q1 + k)

ΨB1α(k) = cBα(Q1 + k)

ΨB2α(k) = cBα(−Q1 + k) (7)

We consider Ψ to be a 8 component vector, and introduce Pauli

matrices ρa which act in the 1, 2 valley space. Then the

Hamiltonian is

H0 =

�
d
2
k

4π2
Ψ

†
(k)

�
vτ ykx + vτ xρzky

�
Ψ(k), (8)

where v = 3t/2; below we set v = 1. Now define Ψ = Ψ
†ρzτ z .

Then we can write the imaginary time Lagrangian as

L0 = −iΨ (ωγ0 + kxγ1 + kyγ2)Ψ (9)

where

γ0 = −ρzτ z γ1 = ρzτ x γ2 = −τ y (10)
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 Graphene

Semi-metal with
massless Dirac fermions

Brillouin zone

Q1

−Q1
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Exercise: Observe that L0 is invariant under the scaling
transformation x � = xe−� and τ � = τe−�. Write the Hubbard
interaction U in terms of the Dirac fermions, and show that it has
the tree-level scaling transformation U � = Ue−�. So argue that all
short-range interactions are irrelevant in the Dirac semi-metal
phase.

Antiferromagnetism

We use the operator equation (valid on each site i):

U

�
n↑ −

1

2

��
n↓ −

1

2

�
= −2U

3
Sa2 +

U

4
(11)

Then we decouple the interaction via

exp

�
2U

3

�

i

�
dτSa2

i

�
=

�
DJai (τ) exp

�
−
�

i

�
dτ

�
3

8U
Ja2i − Jai S

a
i

��

(12)
We now integrate out the fermions, and look for the saddle point
of the resulting effective action for Jai . At the saddle-point we find
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that the lowest energy is achieved when the vector has opposite
orientations on the A and B sublattices. Anticipating this, we look
for a continuum limit in terms of a field ϕa where

JaA = ϕa , JaB = −ϕa (13)

The coupling between the field ϕa and the Ψ fermions is given by

�

i

Jai c
†
iασ

a
αβciβ = ϕa

�
c†Aασ

a
αβcAβ − c†Bασ

a
αβcBβ

�

= ϕaΨ†τ zσaΨ = −ϕaΨρzσaΨ (14)

From this we motivate the low energy theory

L = Ψγµ∂µΨ+
1

2

�
(∂µϕ

a)2 + sϕa2
�
+

u

24

�
ϕa2

�2 − λϕaΨρzσaΨ

(15)
Note that the matrix ρzσa commutes with all the γµ; hence ρzσa

is a matrix in “flavor” space. This is the Gross-Neveu model, and
it describes the quantum phase transition from the Dirac
semi-metal to an insulating Néel state In mean-field theory, the
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Dirac semi-metal is obtained for s > 0 with �ϕa� = 0. The Néel
state obtains for s < 0, and we have ϕa = N0δaz (say), and so the
dispersion of the electrons is

ωk = ±
�
k2 + λ2N2

0 (16)

near the points ±Q1. These form the conduction and valence
bands of the insulator.

Exercise: Perform a tree-level RG transformation on L. The
quadratic gradient terms are invariant under Ψ� = Ψe� and
ϕ� = ϕe�/2. Show that this leads to s � = se2�. Thus s is a relevant
perturbation which drives the system into either the semi-metal or
antiferromagnetic insulator. The quantum critical point is reached
by tuning s to its critical value (= 0 at tree level). Show that the
couplings u and λ are both relevant perturbations at this critical
point. Thus, while interactions are irrelevant in the Dirac
semi-metal (and in the insulator), they are strongly relevant at the
quantum-critical point.
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An analysis of this quantum critical point requires a RG analysis
which goes beyond tree-level. Such an analysis can be controlled in
an expansion in 1/N (where N is the number of fermion flavors) or
(3− d) (where d is the spatial dimensionality. Such analyses show
that the couplings u and λ reach a RG fixed point which describes
a conformal field theory (CFT).
An important result of such an analysis is the following structure in
the electron Green’s function:

G (k ,ω) =
�
Ψ(k ,ω);Ψ†(k ,ω)

�
∼ iω + vkxτ y + vkyτ xρz

(ω2 + v2k2x + v2k2y )
1−η/2

(17)

where η > 0 is the anomalous dimension of the fermion. Note that
this leads to a fermion spectral density which has no quasiparticle
pole: thus the quantum critical point has no well-defined
quasiparticle excitations.
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ImG(k,ω)

v k
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Quantum phase transition described by a strongly-coupled 
conformal field theory without well-defined quasiparticles
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Electrical transport

The conserved electrical current is

Jµ = −iΨγµΨ. (1)

Let us compute its two-point correlator, Kµν(k) at a spacetime
momentum kµ at T = 0. At leading order, this is given by a one
fermion loop diagram which evaluates to

Kµν(k) =

�
d3p

8π3

Tr [γµ(iγλpλ +mρzσz)γν(iγδ(kδ + pδ) +mρzσz)]

(p2 +m2)((p + k)2 +m2)

= − 2

π

�
δµν −

kµkν
k2

�� 1

0
dx

k2x(1− x)�
m2 + k2x(1− x)

, (2)

where the mass m = 0 in the semi-metal and at the quantum
critical point, while m = |λN0| in the insulator. Note that the
current correlation is purely transverse, and this follows from the
requirement of current conservation

kµKµν = 0. (3)
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Of particular interest to us is the K00 component, after analytic

continuation to Minkowski space where the spacetime momentum

kµ is replaced by (ω, k). The conductivity is obtained from this

correlator via the Kubo formula

σ(ω) = lim
k→0

−iω

k2
K00(ω, k). (4)

In the insulator, where m > 0, analysis of the integrand in Eq. (2)

shows that that the spectral weight of the density correlator has a

gap of 2m at k = 0, and the conductivity in Eq. (4) vanishes.

These properties are as expected in any insulator.

In the metal, and at the critical point, where m = 0, the fermionic

spectrum is gapless, and so is that of the charge correlator. The

density correlator in Eq. (2) and the conductivity in Eq. (4)

evaluate to the simple universal results

K00(ω, k) =
1

4

k2√
k2 − ω2

σ(ω) = 1/4. (5)

Going beyond one-loop, we find no change in these results in the
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semi-metal to all orders in perturbation theory. At the quantum
critical point, there are no anomalous dimensions for the conserved
current, but the amplitude does change yielding

K00(ω, k) = K k2√
k2 − ω2

σ(ω) = K, (6)

where K is a universal number dependent only upon the
universality class of the quantum critical point. The value of the K
for the Gross-Neveu model is not known exactly, but can be
estimated by computations in the (3− d) or 1/N expansions.
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Non-zero temperatures

At the quantum-critical point at one-loop order, we can set m = 0,

and then repeat the computation in Eq. (2) at T > 0. This only

requires replacing the integral over the loop frequency by a

summation over the Matsubara frequencies, which are quantized

by odd multiples of πT . Such a computation, via Eq. (4) leads to

the conductivity

Re[σ(ω)] = (2T ln 2) δ(ω) +
1

4
tanh

�
|ω|
4T

�
; (7)

the imaginary part of σ(ω) is the Hilbert transform of

Re[σ(ω)]− 1/4. Note that this reduces to Eq. (5) in the limit

ω � T . However, the most important new feature of Eq. (7)

arises for ω � T , where we find a delta function at zero frequency

in the real part. Thus the d.c. conductivity is infinite at this order,

arising from the collisionless transport of thermally excited carriers.
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ω/T

σ

Electrical transport in a free-field theory for T > 0
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Collisions between carriers invalidate the form in Eq. (7) for the

density correlation function, and we instead expect the form

dictated by the hydrodynamic diffusion of charge. Thus for K00,

Eq. (6) applies only for ω � T , while

K00(ω, k) = χ
Dk2

Dk2 − iω
, ω � T . (8)

Here χ is the charge susceptibility (here it is the compressibility),

and D is the charge diffusion constant. These have universal

values in the quantum critical region:

χ = CχT , D =
CD
T

, (9)

where again Cχ and CD are universal numbers. For the

conductivity, we expect a crossover from the collisionless critical

dynamics at frequencies ω � T , to a hydrodynamic

collision-dominated form for ω � T . This entire crossover is

universal, and is described by a universal crossover function

σ(ω) = Kσ(ω/T ). (10)
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The result in Eq. (6) applies for ω � T , and so

Kσ(∞) = K. (11)

For the hydrodynamic transport, we apply the Kubo formula in
Eq. (4) to Eq. (8) and obtain

Kσ(0) = CχCD (12)

which is a version of Einstein’s relation for Brownian motion.
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More generally, at T > 0, we do not expect Kµν to be
relativistically covariant, and so can only constrain it by spatial
isotropy and density conservation. These two constraints, along
with dimensional analyses, lead to the most general form

Kµν(ω, k) =
�
k2 − ω2

�
PT
µν K

T (ω, k) + PL
µν K

L(ω, k)
�
, (13)

where KL,T are dimensionless functions of the arguments, and
depend upon ω and the magnitude of the 2-vector k . Also PT

µν and

PL
µν are orthogonal projectors defined by

PT
00 = PT

0i = PT
i0 = 0 , PT

ij = δij−
kikj
k2

, PL
µν =

�
ηµν−

pµpν
p2

�
−PT

µν ,

(14)
with the indices i , j running over the 2 spatial components. Thus,
in the general case at T > 0, the full density and current responses
are described in terms of two functions KL,T (k ,ω), representing
current fluctuations longitudinal and transverse to the momentum.
These two functions are not entirely independent. At T > 0, we
expect all correlations to be smooth functions at k = 0: this is
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because all correlations are expected to decay exponentially to zero

as a function of spatial separation. However, this is only possible

from (13) if we have the additional relation

KT
(ω, 0) = KL

(ω, 0). (15)

The relations of the previous paragraph are completely general and

apply to any theory. We now compute the charge correlations by

the holographic Maxwell theory

SEM =
1

g2
4

�
d4x

√
−g

�
−1

4
FabF

ab

�
. (16)
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Density correlations in the holographic 
Maxwell theory
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The self-duality of the 4-dimensional Maxwell theory leads to the
simple and remarkable identity:

KL(ω, k)KT (ω, k) = K2 (17)

where K is a known pure number, independent of ω and k . The
combination of (17) and (15) now fully determine the response
functions at zero momenta: KL(ω, 0) = KT (ω, 0) = K.
Computing the conductivity from Eq. (4), we then have

σ(ω) = Kσ(ω/T ) = K; (18)

i.e. the scaling function in Eq. (10) is independent of ω and equal
to the value in Eq. (11). This result is an important surprise and
the result is a direct consequence of the self-duality of the U(1)
Maxwell theory on AdS4.
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ω/T

σ

Electrical transport in the holographic Maxwell theory
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Let us now go beyond the Maxwell theory, and include all possible

4-derivative terms

S4 =

�
d4x

√
−g

�
α1R

2
+ α2RabR

ab
+ α3

�
F 2

�2
+ α4F

4
(19)

+ α5∇aFab∇cFc
b
+ α6RabcdF

abF cd
+ α7R

abFacFb
c
+ α8RF

2
�

where F 2
= FabF ab

, F 4
= F a

bF b
cF c

dF d
a and the αi are some

coupling constants. After using field redefinitions, and dropping

terms of order F 4
which do not influence the linear conductivity,

we obtain a form which has only one dimensionless constant γ (L
is the radius of AdS4):

Svec =
1

g2
4

�
d4x

√
−g

�
−1

4
FabF

ab
+ γ L2CabcdF

abF cd

�
, (20)

where we have formulated the extra four-derivative interaction in

terms of the Weyl tensor Cabcd . Stability and causality constraints
on the effective theory restrict |γ| < 1/12.
A generalized duality relation applies also to Svec . However this is

not a self -duality. The dual CFT has current correlation functions
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which were characterized by functions �KL,T (ω, k) which are
distinct from those of the direct CFT KL,T (ω, k), and the
self-duality relation of Eq. (17) take the less restrictive form

KL(ω, k)�KT (ω, k) = K2 , KT (ω, k)�KL(ω, k) = K2. (21)

These duality relation determines the correlators of the dual CFT
in terms of the direct CFT, but do not fix the latter. Identical
relations apply under particle-vortex duality to the theory of
complex scalar field, and to SQED3. Determination of the
functions KL(ω, 0) = KT (ω, 0) requires explicit computation using
the extended theory Svec .
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Electrical transport in the extended holographic theory
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Lessons from AdS/CFT

� There are a large class of strongly interacting 2+1
dimensional quantum “nearly perfect” fluids which are able to
relax back to thermal equilibrium in a time of order �/(kBT ).
They are “nearly perfect” because this relaxation time is the
shortest possible.

� The quasiparticle transport theory starts from the free theory
with an infinite thermal equilibration time, and includes the
effect of weak interactions using the Boltzmann equation.
Complementary to this is the quantum-critical transport
theory applicable for the shortest possible equilibration time of
order �/(kBT ), which is the classical Einstein-Maxwell theory
on AdS4.

� The Einstein-Maxwell theory exhibits collisionless dynamics for
ω � T , and collision-dominated dynamics for ω � T .

� All continuous global symmetries are represented by a
self-dual Einstein-Maxwell theory.
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� This emergent self-duality implies that, in systems with
particle-hole symmetry, σ(ω) is frequency-independent in the
Einstein-Maxwell theory and equal to the self-dual value

� For systems with particle-hole symmetry, a frequency
dependent conductivity is obtained upon considering
corrections to the effective Einstein-Maxwell theory. Stability
conditions on the effective theory strongly restrict the range of
frequency dependence.

� Such quantum-critical fluids also have universal momentum
transport. By extending the scaling arguments to momentum
transport we would conclude that the ratio of the shear
viscosity to the entropy density η/s should equal a universal
number characterizing the collision-dominated regime. This
number was computed in the Einstein-Maxwell theory by
Kovtun et al. and found to equal �/(4πkB). The shortest
possible relaxation time implies that η is also the smallest
possible and so these fluids are ‘nearly perfect’.
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Honeycomb lattice with vacancy.

At U = 0, find a zero energy quasi-bound state

with |ψ(r)| ∼ 1/r.

We represent the impurity by a localized fermion field χα(τ).
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We represent the impurity by a localized fermion field χα(τ). The
full theory is described by the partition function

Z =

�
DΨ(r, τ)Dϕa

(r, τ)Dχα(τ)

exp

�
−
�

d2rdτLGN −
�

dτLimp

�

LGN = Ψγµ∂µΨ+
1

2

�
(∂µϕ

a
)
2
+ sϕa2

�
+

u

24

�
ϕa2

�2 − λϕa
Ψρzσa

Ψ

Limp = χ†
α
∂χα

∂τ
− κχ†

ασ
a
αβχβ ϕ

a
(r = 0, τ)

The fermion number χ†
αχα commutes with the Hamiltonian, and

the ground state is found in the sector χ†
αχα = 1.

Exercise: Perform a tree-level RG transformation on LGN + Limp.

The quadratic gradient terms are invariant under Ψ
�
= Ψe� and

ϕ�
= ϕe�/2. Show that the coupling κ is relevant perturbations at

the free field fixed point.
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Under RG, we find that the coupling κ flows to a fixed point value.
Then we have universal theory describing the dynamics near the
impurity at the quantum-critical point between the semi-metal and
the insulating antiferromagnet.
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Z =

�
DΨ(r, τ)Dϕa(r, τ)Dχα(τ) exp

�
−
�

d2rdτLGN −
�

dτLimp

�

Limp = χ†
α
∂χα

∂τ
− κχ†

ασ
a
αβχβ ϕ

a(r = 0, τ)

χα: spinful localized fermion describing impurity
κ: flows to a fixed point κ → κ∗.

CFT

Quantum impurity coupled to a CFT
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S =

�
d3rdτ LSYM +

�
dτ Limp

Limp = χ†
b

∂χb

∂τ
+ iχ†

b

�
(Aτ (0, τ))

b
c + vI (φI(0, τ))

b
c

�
χc

S. Kachru, A. Karch, and S. Yaida, Phys. Rev. D 81, 026007 (2010)

CFT

Quantum superspin coupled to SYM4
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Holographic lattices, dimers, and glasses

Shamit Kachru*,†

Kavli Institute for Theoretical Physics and Department of Physics, University of California, Santa Barbara, California 93106, USA

Andreas Karch‡

Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA

Sho Yaidax

Department of Physics, Stanford University, Stanford, California 94305, USA
(Received 3 November 2009; published 26 January 2010)

We holographically engineer a periodic lattice of localized fermionic impurities within a plasma

medium by putting an array of probe D5-branes in the background produced by N D3-branes.

Thermodynamic quantities are computed in the large N limit via the holographic dictionary. We then

dope the lattice by replacing some of the D5-branes by anti-D5-branes. In the large N limit, we determine

the critical temperature below which the system dimerizes with bond ordering. Finally, we argue that for

the special case of a square lattice our system is glassy at large but finite N, with the low temperature

physics dominated by a huge collection of metastable dimerized configurations without long-range order,

connected only through tunneling events.

DOI: 10.1103/PhysRevD.81.026007 PACS numbers: 11.25.Uv, 11.25.Tq, 71.27.+a

I. INTRODUCTION

Recently there has been a flurry of activity applying the
anti-de Sitter (AdS)/conformal field theory (CFT) corre-
spondence [1–3] to the study of condensed matter systems.
Holographic systems where the CFT exhibits strongly
coupled avatars of metallic phases [4], superfluid-insulator
transitions [5], superconductivity [6,7], and Fermi liquid
theory [8–11] have all been proposed. Also proposed are
gravity duals for scale-invariant nonrelativistic field theo-
ries, enjoying Galilean invariance [12,13] or the smaller
Lifshitz symmetry group [14]. For reviews, see [15–17].
One of the driving forces behind such vigorous activity is
possible applications to condensed matter systems with
quantum critical points, such as heavy fermion materials
and possibly cuprate superconductors. The AdS/CFT cor-
respondence itself may even be thought of as a prime
example of quantum critical phenomena where, at the
conformal fixed point of a family of field theories, there
appear emergent gravitons. At a more concrete level, one
significant advantage the AdS/CFT correspondence offers
over other methods of analyzing model field theories is the
ability to compute real-time correlators, and hence to gain
a handle on transport properties, in strongly coupled field
theories. For a review of this aspect with relevant refer-
ences, see [18].

One limitation of the studies to date is that the systems
considered so far in the literature are spatially homoge-

neous. While such homogeneous systems might suffice for
studies of critical phenomena, where the correlation length
diverges and the microscopic structure of solids does not
play any role, these holographic toy models are completely
inadequate when it comes to questions involving the under-
lying lattice structure of condensed matter systems. In the
first part of this paper, we attempt to remedy this situation
by explicitly constructing holographic systems endowed
with periodic lattice structures, in the context of type IIB
string theory.
To this end, we first consider a probe D5-brane in the

AdS5 ! S5 background geometry, wrapping AdS2 ! S4.
From the boundary field theory’s point of view, this corre-
sponds to adding localized fermionic degrees of freedom
residing on a pointlike impurity coupled to N ¼ 4 super-
symmetric SUðNÞ gauge theory. This is a particular ex-
ample of the more general structure of defect conformal
field theory, investigated in the AdS/CFT context in, for
example, [19–21]. Placing an array of such D5-branes in
the asymptotically AdS5 ! S5 black brane geometry, we
obtain a lattice of impurities immersed in the N ¼ 4
plasma medium at finite temperature [22]. Using the holo-
graphic dictionary, we can compute thermodynamic quan-
tities of this system in the large N and large ’t Hooft
coupling limit, where the gravitational description is
accurate.
We then proceed further and dope the system, replacing

half (say) of the D5-branes by anti-D5-branes. This doping
introduces an interesting phenomenon of dimerization:
whereas both D5- and anti-D5-branes go straight down
into the black brane horizon at high temperature, at low
temperature they pair up by connecting with each other far
from the horizon. Again, in the large N and large ’t Hooft
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• The correlations of the impurity fermion, or impurity spin,
decay with a power-law in time, wtih non-trivial ‘impurity’
exponents.

• The impurity response to a uniform external field is char-
acterized by an impurity susceptiblity which has a Curie
form χimp = C/T , where C is a non-trivial universal num-
ber This response is that of an ‘irrational’ free spin, because
C �= S(S + 1)/3, with 2S an integer.

• There is a finite ground state entropy, Simp, at T = 0. This
entropy is also ‘irrational’ because Simp �= kB ln(an integer).

Common features
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