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Sorry, Einstein. Quantum Study Suggests
‘Spooky Action’ Is Real.

By JOHN MARKOFF OCT. 21, 2015

In a landmark study, scientists at Delft University of Technology in the
Netherlands reported that they had conducted an experiment that they say proved
one of the most fundamental claims of quantum theory — that objects separated by

great distance can instantaneously affect each other’s behavior.

Part of the laboratory
setup for an experiment
at Delft University of
Technology, in which
two diamonds were set
1.3 kilometers apart,
entangled and then
shared information.
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. Superconductor, levitated by an unseen magnet, in which countless
 trillions of electrons form a vast interconnected quantum state.
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| Scientific American, January 2013
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Nd-Fe-B magnets,YBaCuO superconductor

Julian Hetel and Nandini Trivedi, Ohio State University
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Quantum
superposition and

entanglement
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The double slit experiment
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Interference of water waves
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Interference of electrons
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The double slit experiment

But if it is Each
like a |
particle, é electron
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does each i through
electron pass o both slits |
through ?

Interference of electrons
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The double slit experiment
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% 4% & . Let |L) represent the state

with the electron in the left slit

And |R) represents the state
with the electron in the right slit

Actual state of each electron is

L) + |R)
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with more than one particle

Hydrogen atom: ' | /|\>
Hydrogen molecule:

(ITL) = 14T)
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Quantum Entanglement: quantum superposition

with more than one particle

99

Einstein-Podolsky-Rosen “paradox:
Measurement of one particle instantaneously
determines the state of the other particle

arbitrarily far away
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Square lattice of Cu sites

Electrons
entangle in
(“Cooper”)
pairs into
chemical bonds

& o-1h-1T)



Square lattice of Cu sites

Superconductivity !

Cooper pairs
form quantum
superpositions
at different
locations:
“Bose-Einstein
condensation”
in which all
pairs are
“everywhere at
the same time”
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Superconductivity !

Cooper pairs
form quantum
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Square lattice of Cu sites

High temperature superconductivity ?

Electrons
entangle by
exchanging
partners, and
there is long-
range
guantum
entanglement
near the
strange metal.
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Graphene

A single layer of carbon atoms

iIn a honeycomb lattice
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M. Miiller, L. Fritz, and S. Sachdev, PRB 78, 115406 (2008)
M. Miiller and S. Sachdev, PRB 78, 115419 (2008)

Graphene

T(K) Predicted (and recently observed)
strange metal with long-range
gquantum entanglement
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The strange metal is a much better conductor of heat
than electricity, when compared to ordinary metals
J. Crossno et al. arXiv:1509.04713
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Black Holes

Objects so massive that light 1s
oravitationally bound to them.

In Einstein’s theory, the
region inside the black hole
horizon is disconnected from

the rest of the universe.

2GM
2

Horizon radius R =
C



Black Holes + Quantum theory

Around |974, Bekenstein and Hawking
showed that the application of the
quantum theory across a black hole
horizon led to many astonishing
conclusions



Quantum Entanglement across a black hole horizon
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Quantum Entanglement across a black hole horizon

There is long-range quantum

entanglement between the inside
and outside of a black hole

Black hole
horizon



Quantum Entanglement across a black hole horizon

Hawking used this to show that

black hole horizons have an
entropy and a temperature

Black hole
horizon



Quantum Entanglement across a black hole horizon

The Hawking entropy matches

the entropy of some simple

strange metal states of electrons
(S. Sachdey, 2015)
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Quantum Entanglement across a black hole horizon

The Hawking entropy matches

the entropy of some simple

strange metal states of electrons
(S. Sachdey, 2015)

___
The dynamics of black hole horizons has many similarities

to strange metals, and this has led us to a better
understanding of the observable properties of strange
metals in superconductors and other quantum materials
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