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• Consider an infinite, continuum,

translationally-invariant quantum system with a glob-

ally conserved U(1) chargeQ (the “electron density”)

in spatial dimension d > 1.

• Describe zero temperature phases where d�Q�/dµ �=
0, where µ (the “chemical potential”) which changes

the Hamiltonian, H, to H − µQ.

• Compressible systems must be gapless.

• “Relativistic” quantum critical systems are compress-

ible in d = 1, but not for d > 1.

Compressible quantum matter
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One compressible state is the solid (or 
“Wigner crystal” or “stripe”). 

This state breaks translational symmetry.

Compressible quantum matter
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Another familiar compressible state is 
the superfluid. 

This state breaks the global U(1) 
symmetry associated with Q

Condensate of 
fermion pairs

Compressible quantum matter
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Graphene
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The only other 
familiar 

compressible 
phase is a 

Fermi Liquid 
with a 

Fermi surface
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The only other 
familiar 

compressible 
phase is a 

Fermi Liquid 
with a 

Fermi surface

• The only low energy excitations are long-lived quasiparticles
near the Fermi surface.
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The only other 
familiar 

compressible 
phase is a 

Fermi Liquid 
with a 

Fermi surface

• Luttinger relation: The total “volume (area)” A enclosed
by the Fermi surface is equal to �Q�.

A
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1.  Field theory       

1I.  Holography 

Exotic phases of 
compressible quantum matter
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Most common example: electrons with short-range interactions
(or screened long-range interactions), which are adiabatically con-
nected to the non-interacting limit. The electron Green’s function
Gf has a pole which crosses zero energy at k = kF , and the Fermi
surface has the same area as the non-interacting case.

The Fermi Liquid (FL)

Saturday, December 10, 2011



Most common example: electrons with short-range interactions
(or screened long-range interactions), which are adiabatically con-
nected to the non-interacting limit. The electron Green’s function
Gf has a pole which crosses zero energy at k = kF , and the Fermi
surface has the same area as the non-interacting case.

The Fermi Liquid (FL)

A

L = f†
σ

�
∂τ − ∇2

2m
− µ

�
fσ + 4 Fermi terms

A =
�
f†
σfσ

�
= �Qσ�

Gf =
1

ω − vF (k − kF ) + iω2
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• Model of a spin liquid (“Bose metal”): couple fermions to a
dynamical gauge field Aa.

• Longitudinal gauge fluctuations are screened by the fermions.
But transverse gauge fluctuations remain unscreened, and are
Landau-damped by excitations near the Fermi surface. The
theory of a Fermi surface coupled to transverse gauge fluctua-
tions is strongly coupled in two spatial dimensions.

• The overdamped transverse gauge modes lead to “non-Fermi
liquid” broadening of the fermion pole near the Fermi surface.

L = f†
σ

�
∂τ − ∇2

2m
− µ

�
fσ
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• Model of a spin liquid (“Bose metal”): couple fermions to a
dynamical gauge field Aa.

• Longitudinal gauge fluctuations are screened by the fermions.
But transverse gauge fluctuations remain unscreened, and are
Landau-damped by excitations near the Fermi surface. The
theory of a Fermi surface coupled to transverse gauge fluctua-
tions is strongly coupled in two spatial dimensions.

• The overdamped transverse gauge modes lead to “non-Fermi
liquid” broadening of the fermion pole near the Fermi surface.

S.-S. Lee, Phys. Rev. B 80, 165102 (2009)
M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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• The location of the Fermi surfaces is well defined,
and the Luttinger relation applies as before.

• Fluctuations near the Fermi surface are described
by a strongly-coupled two-patch theory. Ward
identities allow consistent matching of the patches,
and patches along different directions decouple in
the low energy limit.

• The singularity of the Green’s function upon ap-
proaching the Fermi surface is described by the
scaling form

G−1
f = q1−ηF (ω/qz)

where qx = kx − kF , qy = ky, and q = qx +
q2y/(2kF ), and η and z are anomalous exponents.
To three-loop order, we find η �= 0 and z = 3/2.

AA

A =
�
f†
σfσ

�
= �Qσ�

L = f†
σ

�
∂τ − iAτ − (∇− iA)2

2m
− µ

�
fσ
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S.-S. Lee, Phys. Rev. B 80, 165102 (2009)
M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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S.-S. Lee, Phys. Rev. B 80, 165102 (2009)
M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

• The location of the Fermi surfaces is well defined,
and the Luttinger relation applies as before.

• Fluctuations near the Fermi surface are described
by a strongly-coupled two-patch theory. Ward
identities allow consistent matching of the patches,
and patches along different directions decouple in
the low energy limit.

• The singularity of the Green’s function upon ap-
proaching the Fermi surface is described by the
scaling form

G−1
f = q1−ηF (ω/qz)

where qx = kx − kF , qy = ky, and q = qx +
q2y/(2kF ), and η and z are anomalous exponents.
To three-loop order, we find η �= 0 and z = 3/2.

A =
�
f†
σfσ

�
= �Qσ�

One-loop order: G−1
f ∼ vF q + iω2/3
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How do we detect the 
“hidden Fermi surfaces” 

of fermions with gauge charges 
in the non-Fermi liquid phases ?

These are not directly visible in the 
gauge-invariant fermion correlations 

computable via holography

Key question: 
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How do we detect the 
“hidden Fermi surfaces” 

of fermions with gauge charges 
in the non-Fermi liquid phases ?

Compute 
entanglement entropy

One promising answer: 

N. Ogawa, T. Takayanagi, and T. Ugajin, arXiv:1111.1023
L. Huijse, B. Swingle, and S. Sachdev arXiv:1112.0573
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B

A

Entanglement entropy of Fermi surfaces

ρA = TrBρ = density matrix of region A

Entanglement entropy SEE = −Tr (ρA ln ρA)

Saturday, December 10, 2011



Logarithmic violation of “area law”: SEE =
1

12
(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

B

A

Entanglement entropy of Fermi surfaces

D. Gioev and I. Klich, Physical Review Letters 96, 100503 (2006)
B. Swingle,  Physical Review Letters 105, 050502 (2010)
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Logarithmic violation of “area law”: SEE =
1

12
(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

B

A

Entanglement entropy of Fermi surfaces

Y.  Zhang, T. Grover,  and A. Vishwanath, Physical Review Letters 107, 067202 (2011)
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1.  Field theory       

1I.  Holography 

Exotic phases of 
compressible quantum matter
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Field theories in d + 1 spacetime dimensions are

characterized by couplings g which obey the renor-

malization group equation

u
dg

du
= β(g)

where u is the energy scale. The RG equation is

local in energy scale, i.e. the RHS does not depend

upon u.
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u
Key idea: ⇒ Implement u as an extra dimen-
sion, and map to a local theory in d + 2 spacetime
dimensions.
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At the RG fixed point, β(g) = 0, the (d + 1)-
dimensional “relativistic” field theory is invariant
under the scale transformation (i = 1 . . . d)

xi → ζxi , t → ζt , u → u/ζ
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This is assumed to be an invariance of the metric of

the theory in d+2 dimensions. The unique solution

is

ds2 =

� u

L

�2 �
−dt2 + dx2

i

�
+ L2 du

2

u2
.

Or, using the length scale r = L2/u

ds2 = L2

�
−dt2 + dx2

i + dr2
�

r2
.

This is the space AdSd+2, and L is the AdS radius.

At the RG fixed point, β(g) = 0, the (d + 1)-
dimensional “relativistic” field theory is invariant
under the scale transformation (i = 1 . . . d)

xi → ζxi , t → ζt , u → u/ζ
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u
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r

J. McGreevy, arXiv0909.0518
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J. McGreevy, arXiv0909.0518

r

AdSd+2

CFTd+1

Rd,1

Minkowski
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In general, such scaling arguments lead to the most general
metric

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

in d spatial dimensions, i = 1 . . . d. Reparametrization invari-
ance in r has been used to set the prefactor dx2

i to equal 1/r2.

This metric is invariant under

xi → ζ xi

t → ζz t

ds → ζθ/d ds.

This identifies z as the dynamic critical exponent (z = 1 for
“relativistic” quantum critical points).

What is θ ? (θ = 0 for “relativistic” quantum critical points).
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At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the

thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the

“area” of the horizon, and so S ∼ r−d
h

r
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r

At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the

thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the

“area” of the horizon, and so S ∼ r−d
h

Under rescaling r → ζ(d−θ)/dr, and the
temperature T ∼ t−1, and so

S ∼ T (d−θ)/z

So θ is the “violation of hyperscaling” exponent.
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A non-Fermi liquid has gapless fermionic
excitations on the Fermi surface, which
disperse in the single transverse direction
with dynamic critical exponent z. So we
expect compressible quantum states to have
an effective dimension d− θ with

θ = d− 1
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depth of
entanglement

D-dimensional
space

Tensor network representation of entanglement

M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007)
F.  Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, Phys. Rev. Lett. 96, 220601 (2006)

d
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String theory near 
a d-brane

depth of
entanglement

D-dimensional
space

Emergent 
holographic direction

d
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depth of
entanglement

D-dimensional
space

Brian Swingle, arXiv:0905.1317

Tensor network representation of entanglement

Emergent 
holographic direction

d
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depth of
entanglement

D-dimensional
space

Entanglement entropy

A

Emergent 
holographic direction

d
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depth of
entanglement

D-dimensional
space

Entanglement entropy

A

Draw a surface which intersects the minimal number of links

Emergent 
holographic direction

d
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The entanglement entropy of a region A on the boundary 
equals the minimal area of a surface in the higher-dimensional 

space whose boundary co-incides with that of A.

This can be seen in both the string and 
tensor-network pictures

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).
Brian Swingle, arXiv:0905.1317

Entanglement entropy
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Entanglement entropy of the metric

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

The area law is obeyed for

θ ≤ d− 1
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Entanglement entropy of the metric

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

The area law is obeyed for

θ ≤ d− 1

N. Ogawa, T. Takayanagi, and T. Ugajin, arXiv:1111.1023; L. Huijse, S. Sachdev, B. Swingle, arXiv:1112.0573

For θ = d− 1, the value expected for compressible quantum
states, the entanglement entropy has log-violation of the area
law

SE = ηQ(d−1)/dΣ ln

�
Q(d−1)/dΣ

�
.
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Entanglement entropy of the metric

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

The area law is obeyed for

θ ≤ d− 1

• η is a dimensionless constant which is
independent of Q and of any property of the
entangling region.

For θ = d− 1, the value expected for compressible quantum
states, the entanglement entropy has log-violation of the area
law

SE = ηQ(d−1)/dΣ ln

�
Q(d−1)/dΣ

�
.

L. Huijse, S. Sachdev, B. Swingle, arXiv:1112.0573
Saturday, December 10, 2011



Entanglement entropy of the metric

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

The area law is obeyed for

θ ≤ d− 1

• Σ is the (d − 1)-dimensional surface area of entangling
region (in d = 2, Σ = P is the perimeter). Note SE is
otherwise independent of the shape of the entangling re-
gion, unlike other gapless systems. This is a characteristic
property of a Fermi surface

L. Huijse, S. Sachdev, B. Swingle, arXiv:1112.0573

For θ = d− 1, the value expected for compressible quantum
states, the entanglement entropy has log-violation of the area
law

SE = ηQ(d−1)/dΣ ln

�
Q(d−1)/dΣ

�
.
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Entanglement entropy of the metric

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

The area law is obeyed for

θ ≤ d− 1

• Q is the total conserved charge. The metric has a com-
plicated dependence on Q, but SE is just proportional
to Q(d−1)/d. Many UV details are irrelevant, and SE

flows to the universal Q dependence in the IR. By Lut-
tinger’s relation Q ∼ kd−1

F , and so prefactor is the area
of the Fermi surface, as expected from field theory.

For θ = d− 1, the value expected for compressible quantum
states, the entanglement entropy has log-violation of the area
law

SE = ηQ(d−1)/dΣ ln

�
Q(d−1)/dΣ

�
.

L. Huijse, S. Sachdev, B. Swingle, arXiv:1112.0573
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Inequalities

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

The area law of entanglement entropy is obeyed for

θ ≤ d− 1.

The “null energy condition” of the gravity theory yields

z ≥ 1 +
θ

d
.

Remarkably, for d = 2, θ = d − 1 and z = 1 + θ/d, we obtain
z = 3/2, the same value associated with the field theory.

N. Ogawa, T. Takayanagi, and T. Ugajin, arXiv:1111.1023; L. Huijse, S. Sachdev, B. Swingle, arXiv:1112.0573
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N. Ogawa, T. Takayanagi, and T. Ugajin, arXiv:1111.1023; L. Huijse, S. Sachdev, B. Swingle, arXiv:1112.0573

Inequalities

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

The area law of entanglement entropy is obeyed for

θ ≤ d− 1.

The “null energy condition” of the gravity theory yields

z ≥ 1 +
θ

d
.

Remarkably, for d = 2, θ = d − 1 and z = 1 + θ/d, we obtain
z = 3/2, the same value associated with the field theory.
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Holographic theory of a non-Fermi liquid (NFL)

Saturday, December 10, 2011



Holographic theory of a fractionalized-Fermi liquid (FL*)
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Holographic theory of a Fermi liquid (FL)
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Holographic theory of a Fermi liquid (FL)

Gauss Law in the bulk
⇔ Luttinger theorem on the boundary
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Field theory Holography

A gauge-dependent Fermi
surface of overdamped
gapless fermions.

Fermi surface is hidden.

Thermal entropy density S ∼
T 1/z in d = 2, where z is the
dynamic critical exponent.

Thermal entropy density S ∼
T 1/z in all d for hyperscaling
violation exponent θ = d− 1,
and z the dynamic critical ex-
ponent.

Logarithmic violation of area
law of entanglement entropy,
with prefactor proportional
to the product of Q(d−1)/d

and the boundary area of the
entangling region.

Logarithmic violation of area
law of entanglement entropy
for θ = d − 1, with prefactor
proportional to the product
of Q(d−1)/d and the boundary
area of the entangling region.

Theory of a non-Fermi liquid (NFL)
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Field theory Holography

Three-loop analysis shows
z = 3/2 in d = 2.

Existence of gravity dual im-
plies z ≥ 1 + θ/d; leads to
z ≥ 3/2 for θ = d−1 in d = 2.

Fermi surface encloses a vol-
ume proportional to Q, as de-
manded by the Luttinger re-
lation.

The value of kF obtained
from the entanglement en-
tropy implies the Fermi sur-
face encloses a volume pro-
portional to Q, as demanded
by the Luttinger relation.

Gauge neutral ‘mesinos’ re-
duce the volume enclosed
by Fermi surfaces of gauge-
charged fermions to Q −
Qmesino.

Gauge neutral ‘mesinos’ re-
duce the volume enclosed by
hidden Fermi surfaces to Q−
Qmesino.

Theory of a non-Fermi liquid (NFL)
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