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Γ Γ

Central ingredients in cuprate phase diagram: 
antiferromagnetism, superconductivity, and 

change in Fermi surface
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N. E. Hussey,  J. Phys: Condens. Matter 20, 123201 (2008)

Crossovers in transport properties of hole-doped cuprates
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S. Sachdev and 
J. Ye, Phys. Rev. Lett. 
69, 2411 (1992).

 A. J. Millis,       
Phys. Rev. B 48, 
7183 (1993).

C. M. Varma,      
Phys. Rev. Lett. 83, 
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Pseudo-
gap

Strange metal: quantum criticality of
optimal doping critical point at x = xm ?
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Fermi surface+antiferromagnetism

Γ

Hole 
states 
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Electron 
states 
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Γ

The electron spin polarization obeys
�

�S(r, τ)
�

= �ϕ(r, τ)eiK·r

where K is the ordering wavevector.

+
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Increasing SDW order

ΓΓΓ

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). 
A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).
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Nature 450, 533 (2007)

Quantum oscillations
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Nature 450, 533 (2007)

Quantum oscillations
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arXiv:0912.3022

Fermi liquid behaviour in an 
underdoped high Tc 
superconductor

Suchitra E. Sebastian, N. Harrison, 
M. M. Altarawneh, Ruixing Liang, D. A. Bonn, 
W. N. Hardy, and G. G. Lonzarich

Evidence for small Fermi pockets
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Evidence for connection between linear resistivity and
stripe-ordering in a cuprate with a low Tc

Linear temperature dependence of resistivity and change in the Fermi 
surface at the pseudogap critical point of a high-Tc superconductor
R. Daou, Nicolas Doiron-Leyraud, David LeBoeuf, S. Y. Li, Francis Laliberté, 
Olivier Cyr-Choinière, Y. J. Jo, L. Balicas, J.-Q. Yan, J.-S. Zhou, J. B. Goodenough 
& Louis Taillefer, Nature Physics 5, 31 - 34 (2009)

• Magnetic field
of upto 35 T
used to suppress
superconductivity

• Identifies xm ≈ 0.24
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Nd2−xCexCuO4

T. Helm, M. V. Kartsovnik, 
M. Bartkowiak, N. Bittner, 

M. Lambacher, A. Erb, J. Wosnitza, 
and R. Gross, 

Phys. Rev. Lett. 103, 157002 (2009). 

Increasing SDW orderIncreasing SDW order

Quantum oscillations
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J. Chang, N. B. Christensen,      
Ch. Niedermayer, K. Lefmann,      

H. M. Roennow, D. F. McMorrow,    
A. Schneidewind, P. Link, A. Hiess, 

M. Boehm, R. Mottl, S. Pailhes,   
N. Momono, M. Oda, M. Ido, and 

J. Mesot, 
Phys. Rev. Lett. 102, 177006 

(2009).

J. Chang, Ch. Niedermayer, R. Gilardi,        
N.B. Christensen, H.M. Ronnow,                

D.F. McMorrow, M. Ay, J. Stahn, O. Sobolev,      
A. Hiess, S. Pailhes, C. Baines, N. Momono,    

M. Oda, M. Ido, and J. Mesot, 
Physical Review B 78, 104525 (2008).
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Neutron scatter-

ing experiments on

Nd2−xCexCuO4 show

that at low fields

xs = 0.14, while

quantum oscilla-

tions at high fields

show that xm = 0.165.
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G. Knebel, D. Aoki, and J. Flouquet, arXiv:0911.5223

Similar phase diagram for CeRhIn5
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Similar phase diagram for the pnictides

Ishida, Nakai, and Hosono
arXiv:0906.2045v1
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S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, 
A. Thaler, N. Ni, S. L. Bud'ko, P. C. Canfield, J. Schmalian, 
R. J. McQueeney, A. I. Goldman, arXiv:0911.3136.
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For incommensurate ordering,
the SDW order parameter con-
sists of 2 complex 3-component
vectors �Φx, �Φy:

�
�S(r, τ)

�
= �Φx(r, τ)eiKx·r

+ �Φy(r, τ)eiKy·r + c.c.

where Kx = (π(1− ϑ), π) and
Ky = (π, π(1− ϑ)), with
ϑ = 1/4 near 1/8 doping.

kx

ky

(π, π)

Remnants of SDW order for xs < x < xm
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SDW correlations also Ising ne-
matic order φ ∝ |Φx|2− |Φy|2,
which can be long-ranged, with
SDW and VBS/CDW order all
short ranged. This implies of
preferential enhancement of elec-
tronic exchange/pairing ener-
gies along the x or y direc-
tions.

kx

ky

(π, π)

Remnants of SDW order for xs < x < xm

S. A. Kivelson, E. Fradkin, and  V. J. Emery,  Nature 393, 550 (1998).
R. K. Kaul, M. Metlitksi, S. Sachdev,  and Cenke Xu, Phys. Rev. B 78, 045110 (2008).
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SDW correlations also Ising ne-
matic order φ ∝ |Φx|2− |Φy|2,
which can be long-ranged, with
SDW and VBS/CDW order all
short ranged. This implies of
preferential enhancement of elec-
tronic exchange/pairing ener-
gies along the x or y direc-
tions.

S. A. Kivelson, E. Fradkin, and  V. J. Emery,  Nature 393, 550 (1998).
R. K. Kaul, M. Metlitksi, S. Sachdev,  and Cenke Xu, Phys. Rev. B 78, 045110 (2008).
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d-wave
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Tsdw

R. K. Kaul, M. Metlitksi, S. Sachdev, 
and Cenke Xu, 
Physical Review B 78, 045110 (2008).

Fluctuating, 
paired Fermi

pockets

Onset of 
superconductivity 

disrupts SDW 
order, but 

VBS/CDW/
Ising-nematic 
ordering can 

survive

VBS/CDW and/or
Ising-nematic order

TI-n
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1.  Phase diagram of the cuprates
         Quantum criticality of the competition between
              antiferromagnetism and superconductivity

2.  Influence of an applied magnetic field
          Theoretical predictions and experimental tests

3.  Theory of spin density wave ordering in a metal
   Order parameter at zero wavevector

4.  Theory of Ising-nematic ordering in a metal
   Order parameter at zero wavevector
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Increasing SDW order

ΓΓΓ

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). 
A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Γ

Hole 
pockets

Electron 
pockets

Large Fermi surface breaks up into
electron and hole pockets

Hole-doped cuprates
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Increasing SDW order

ΓΓΓ

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). 
A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Γ

Hole 
pockets

Electron 
pockets

Hole-doped cuprates

�ϕ

�ϕ fluctuations act on the
large Fermi surface
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Start from the “spin-fermion” model

Z =
�
DcαD�ϕ exp (−S)

S =
�

dτ
�

k

c†kα

�
∂

∂τ
− εk

�
ckα

− λ

�
dτ

�

i

c†iα�ϕi · �σαβciβeiK·ri

+
�

dτd2r

�
1
2

(∇r �ϕ)2 +
�ζ
2

(∂τ �ϕ)2 +
s

2
�ϕ2 +

u

4
�ϕ4

�
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� = 1

� = 2

� = 4

� = 3

Low energy fermions
ψ�

1α, ψ�
2α

� = 1, . . . , 4

Lf = ψ�†
1α

�
ζ∂τ − iv�

1 · ∇r

�
ψ�

1α + ψ�†
2α

�
ζ∂τ − iv�

2 · ∇r

�
ψ�

2α

v�=1
1 = (vx, vy), v�=1

2 = (−vx, vy)
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Lf = ψ�†
1α

�
ζ∂τ − iv�

1 · ∇r

�
ψ�

1α + ψ�†
2α

�
ζ∂τ − iv�

2 · ∇r

�
ψ�

2α

v1 v2

ψ2 fermions
occupied

ψ1 fermions
occupied
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Lf = ψ�†
1α

�
ζ∂τ − iv�

1 · ∇r

�
ψ�

1α + ψ�†
2α

�
ζ∂τ − iv�

2 · ∇r

�
ψ�

2α

v1 v2

“Hot spot”

“Cold” Fermi surfaces
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Order parameter: Lϕ =
1

2
(∇r �ϕ)

2
+

�ζ
2

(∂τ �ϕ)
2

+
s

2
�ϕ2

+
u

4
�ϕ4

Lf = ψ�†
1α

�
ζ∂τ − iv�

1 · ∇r

�
ψ�

1α + ψ�†
2α

�
ζ∂τ − iv�

2 · ∇r

�
ψ�

2α
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Lf = ψ�†
1α

�
ζ∂τ − iv�

1 · ∇r

�
ψ�

1α + ψ�†
2α

�
ζ∂τ − iv�

2 · ∇r

�
ψ�

2α

Order parameter: Lϕ =
1

2
(∇r �ϕ)

2
+

�ζ
2

(∂τ �ϕ)
2

+
s

2
�ϕ2

+
u

4
�ϕ4

“Yukawa” coupling: Lc = −λ�ϕ ·
�
ψ�†

1α�σαβψ�
2β + ψ�†

2α�σαβψ�
1β

�
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Hertz-Moriya-Millis (HMM) theory
Integrate out fermions and obtain non-local corrections to Lϕ

Lϕ =
1
2

�ϕ2
�
q2 + γ|ω|

�
/2 ; γ =

2
πvxvy

Exponent z = 2 and mean-field criticality (upto logarithms)

Lf = ψ�†
1α

�
ζ∂τ − iv�

1 · ∇r

�
ψ�

1α + ψ�†
2α

�
ζ∂τ − iv�

2 · ∇r

�
ψ�

2α

Order parameter: Lϕ =
1

2
(∇r �ϕ)

2
+

�ζ
2

(∂τ �ϕ)
2

+
s

2
�ϕ2

+
u

4
�ϕ4

“Yukawa” coupling: Lc = −λ�ϕ ·
�
ψ�†

1α�σαβψ�
2β + ψ�†

2α�σαβψ�
1β

�
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But, higher order terms contain an infinite
number of marginal couplings . . . . . .

Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, 255702 (2004).

Integrate out fermions and obtain non-local corrections to Lϕ

Lϕ =
1
2

�ϕ2
�
q2 + γ|ω|

�
/2 ; γ =

2
πvxvy

Exponent z = 2 and mean-field criticality (upto logarithms)

Lf = ψ�†
1α

�
ζ∂τ − iv�

1 · ∇r

�
ψ�

1α + ψ�†
2α

�
ζ∂τ − iv�

2 · ∇r

�
ψ�

2α

Hertz-Moriya-Millis (HMM) theory

Order parameter: Lϕ =
1

2
(∇r �ϕ)

2
+

�ζ
2

(∂τ �ϕ)
2

+
s

2
�ϕ2

+
u

4
�ϕ4

“Yukawa” coupling: Lc = −λ�ϕ ·
�
ψ�†

1α�σαβψ�
2β + ψ�†

2α�σαβψ�
1β

�

Thursday, February 25, 2010



Perform RG on both fermions and �ϕ,
using a local field theory.

Lf = ψ�†
1α

�
ζ∂τ − iv�

1 · ∇r

�
ψ�

1α + ψ�†
2α

�
ζ∂τ − iv�

2 · ∇r

�
ψ�

2α

Order parameter: Lϕ =
1

2
(∇r �ϕ)

2
+

�ζ
2

(∂τ �ϕ)
2

+
s

2
�ϕ2

+
u

4
�ϕ4

“Yukawa” coupling: Lc = −λ�ϕ ·
�
ψ�†

1α�σαβψ�
2β + ψ�†

2α�σαβψ�
1β

�
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Lf = ψ�†
1α

�
ζ∂τ − iv�

1 · ∇r

�
ψ�

1α + ψ�†
2α

�
ζ∂τ − iv�

2 · ∇r

�
ψ�

2α

Order parameter: Lϕ =
1

2
(∇r �ϕ)

2
+

�ζ
2

(∂τ �ϕ)
2

+
s

2
�ϕ2

+
u

4
�ϕ4

“Yukawa” coupling: Lc = −λ�ϕ ·
�
ψ�†

1α�σαβψ�
2β + ψ�†

2α�σαβψ�
1β

�

Under the rescaling x� = xe−�, τ � = τe−z�, the spatial gradients
are fixed if the fields transform as

�ϕ� = e(d+z−2)�/2�ϕ ; “ ψ� = e(d+z−1)�/2ψ.

Then the Yukawa coupling transforms as

λ� = e(4−d−z)�/2λ

For d = 2, with z = 2 the Yukawa coupling is invariant, and the
bare time-derivative terms ζ, �ζ are irrelevant.
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“Yukawa” coupling: Lc = −�ϕ ·
�
ψ�†

1α�σαβψ�
2β + ψ�†

2α�σαβψ�
1β

�

Lf = ψ�†
1α

�
ζ∂τ − iv�

1 · ∇r

�
ψ�

1α + ψ�†
2α

�
ζ∂τ − iv�

2 · ∇r

�
ψ�

2α

Order parameter: Lϕ =
1

2
(∇r �ϕ)

2
+

�ζ
2

(∂τ �ϕ)
2

+
s

2
�ϕ2

+
u

4
�ϕ4

With z = 2 scaling, ζ is irrelevant.
So we take ζ → 0

( watch for dangerous irrelevancy).
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“Yukawa” coupling: Lc = −�ϕ ·
�
ψ�†

1α�σαβψ�
2β + ψ�†

2α�σαβψ�
1β

�

Set �ϕ wavefunction renormalization by
keeping co-efficient of (∇r �ϕ)2 fixed (as usual).

Lf = ψ�†
1α

�
ζ∂τ − iv�

1 · ∇r

�
ψ�

1α + ψ�†
2α

�
ζ∂τ − iv�

2 · ∇r

�
ψ�

2α

Order parameter: Lϕ =
1

2
(∇r �ϕ)

2
+

�ζ
2

(∂τ �ϕ)
2

+
s

2
�ϕ2

+
u

4
�ϕ4
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“Yukawa” coupling: Lc = −�ϕ ·
�
ψ�†

1α�σαβψ�
2β + ψ�†

2α�σαβψ�
1β

�

Y. Huh and S. Sachdev, Phys. Rev. B 78, 064512 (2008).

Set fermion wavefunction renormalization by
keeping Yukawa coupling fixed.

Lf = ψ�†
1α

�
ζ∂τ − iv�

1 · ∇r

�
ψ�

1α + ψ�†
2α

�
ζ∂τ − iv�

2 · ∇r

�
ψ�

2α

Order parameter: Lϕ =
1

2
(∇r �ϕ)

2
+

�ζ
2

(∂τ �ϕ)
2

+
s

2
�ϕ2

+
u

4
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“Yukawa” coupling: Lc = −�ϕ ·
�
ψ�†

1α�σαβψ�
2β + ψ�†

2α�σαβψ�
1β

�

Lf = ψ�†
1α

�
ζ∂τ − iv�

1 · ∇r

�
ψ�

1α + ψ�†
2α

�
ζ∂τ − iv�

2 · ∇r

�
ψ�

2α

We find consistent two-loop RG factors, as ζ → 0, for the
velocities vx, vy, and the wavefunction renormalizations.

Consistency check: the expression for the boson damp-

ing constant, γ =
2

πvxvy
, is preserved under RG.

Order parameter: Lϕ =
1

2
(∇r �ϕ)

2
+

�ζ
2

(∂τ �ϕ)
2

+
s

2
�ϕ2

+
u

4
�ϕ4
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RG-improved Migdal-Eliashberg theory

RG flow can be computed a 1/N expansion (with N
fermion species) in terms of a single dimensionless

coupling α = vy/vx whose flow obeys

dα

d�
= − 3

πN

α2

1 + α2
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RG-improved Migdal-Eliashberg theory

RG flow can be computed a 1/N expansion (with N
fermion species) in terms of a single dimensionless

coupling α = vy/vx whose flow obeys

dα

d�
= − 3

πN

α2

1 + α2

The velocities flow as

1
vx

dvx

d�
=

A(α) + B(α)
2

;
1
vy

dvy

d�
=
−A(α) + B(α)

2

A(α) ≡ 3
πN

α

1 + α2

B(α) ≡ 1
2πN

�
1
α
− α

� �
1 +

�
1
α
− α

�
tan−1 1

α

�
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RG-improved Migdal-Eliashberg theory

RG flow can be computed a 1/N expansion (with N
fermion species) in terms of a single dimensionless

coupling α = vy/vx whose flow obeys

dα

d�
= − 3

πN

α2

1 + α2

The anomalous dimensions of �ϕ and ψ are

ηϕ =
1

2πN

�
1
α
− α +

�
1
α2

+ α2

�
tan−1 1

α

�

ηψ = − 1
4πN

�
1
α
− α

� �
1 +

�
1
α
− α

�
tan−1 1

α

�
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Dynamical Nesting

RG-improved Migdal-Eliashberg theory

v1 v2

Bare Fermi surface

α = vy/vx → 0 logarithmically in the infrared.
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Dynamical Nesting

RG-improved Migdal-Eliashberg theory

Dressed Fermi surface

α = vy/vx → 0 logarithmically in the infrared.
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RG-improved Migdal-Eliashberg theory

In �ϕ SDW fluctuations, characteristic q and ω scale as

q ∼ ω1/2
exp

�
− 3

64π2

�
ln(1/ω)

N

�3
�

.

However, 1/N expansion cannot be trusted

in the asymptotic regime.

α = vy/vx → 0 logarithmically in the infrared.
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�ϕ propagator

fermion propagator

1
N

1
(q2 + γ|ω|)

1

v · q + iζω + i
1

N
√

γv

√
ωF

�
v2q2

ω

�

New infra-red singularities as ζ → 0 at higher loops
(Breakdown of Migdal-Eliashberg)
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�ϕ propagator

fermion propagator

Dangerous

1
N

1
(q2 + γ|ω|)

1

v · q + iζω + i
1

N
√

γv

√
ωF

�
v2q2

ω

�

New infra-red singularities as ζ → 0 at higher loops
(Breakdown of Migdal-Eliashberg)
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Ignoring fermion self energy: ∼ 1
N2

× 1
ζ2
× 1

ω

New infra-red singularities as ζ → 0 at higher loops
(Breakdown of Migdal-Eliashberg)
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Actual order ∼ 1
N0

Ignoring fermion self energy: ∼ 1
N2

× 1
ζ2
× 1

ω

New infra-red singularities as ζ → 0 at higher loops
(Breakdown of Migdal-Eliashberg)
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Double line representation
•  A way to compute the order of a diagram.

•  Extra powers of N come from the Fermi-surface

•  What are the conditions for all propagators to be on the Fermi surface?

•  Concentrate on diagrams involving a single pair of hot-spots

•  Any bosonic momentum may be (uniquely) written as

R. Shankar, Rev. Mod. Phys. 
66, 129 (1994).
S. W. Tsai, A. H. Castro 
Neto, R. Shankar, and 
D. K. Campbell, Phys. Rev. B 
72, 054531 (2005).
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=

New infra-red singularities as ζ → 0 at higher loops
(Breakdown of Migdal-Eliashberg)

Actual order ∼ 1
N0

Singularities as ζ → 0 appear when fermions in closed blue
and red line loops are exactly on the Fermi surface
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Graph is planar after turning fermion propagators also into double lines 
by drawing additional dotted single line loops for each fermion loop

Actual order ∼ 1
N0

=

New infra-red singularities as ζ → 0 at higher loops
(Breakdown of Migdal-Eliashberg)

Sung-Sik Lee, arXiv:0905.4532
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A consistent analysis requires 
resummation of all planar graphs 

Actual order ∼ 1
N0

=

New infra-red singularities as ζ → 0 at higher loops
(Breakdown of Migdal-Eliashberg)
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1.  Phase diagram of the cuprates
         Quantum criticality of the competition between
              antiferromagnetism and superconductivity

2.  Influence of an applied magnetic field
          Theoretical predictions and experimental tests

3.  Theory of spin density wave ordering in a metal
   Order parameter at zero wavevector

4.  Theory of Ising-nematic ordering in a metal
   Order parameter at zero wavevector

Outline
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rrc

Pomeranchuk instability as a function of coupling r

�φ� = 0�φ� �= 0

Quantum criticality of Pomeranchuk instability
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Quantum criticality of Pomeranchuk instability

Effective action for Ising order parameter

Sφ =
�

d2xdτ
�
(∂τφ)2 + c2(∇φ)2 + (r − rc)φ2 + uφ4

�
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Quantum criticality of Pomeranchuk instability

Effective action for electrons:

Sc =
�

dτ

Nf�

α=1




�

i

c†iα∂τ ciα −
�

i<j

tijc
†
iαciα





≡
Nf�

α=1

�

k

�
dτc†kα (∂τ + εk) ckα

Effective action for Ising order parameter

Sφ =
�

d2xdτ
�
(∂τφ)2 + c2(∇φ)2 + (r − rc)φ2 + uφ4

�
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Quantum criticality of Pomeranchuk instability

�φ� > 0 �φ� < 0

Coupling between Ising order and electrons

Sφc = − γ

�
dτ φ

Nf�

α=1

�

k

(cos kx − cos ky)c†kαckα

for spatially independent φ
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Quantum criticality of Pomeranchuk instability

�φ� > 0 �φ� < 0

Coupling between Ising order and electrons

Sφc = − γ

�
dτ

Nf�

α=1

�

k,q

φq (cos kx− cos ky)c†k+q/2,αck−q/2,α

for spatially dependent φ
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Quantum criticality of Pomeranchuk instability

Sc =
Nf�

α=1

�

k

�
dτc†kα (∂τ + εk) ckα

Sφc = − γ

�
dτ

Nf�

α=1

�

k,q

φq (cos kx− cos ky)c†k+q/2,αck−q/2,α

Sφ =
�

d2rdτ
�
(∂τφ)2 + c2(∇φ)2 + (r − rc)φ2 + uφ4

�
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A φ fluctuation at wavevector �q couples most efficiently to
fermions near ±�k0.

Expand fermion kinetic energy at wavevectors about �k0
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L = ψ†
+

�
ζ∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
ζ∂τ + i∂x − ∂2

y

�
ψ−

− λφ
�
ψ†

+ψ+ + ψ†
−ψ−

�
+

1
2g

(∂yφ)2 +
r

2
φ2

Theory of Ising-nematic transition
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Emergent “Galilean invariance” at low energy (s = ±):

φ(x, y)→ φ(x, y + θx), ψs(x, y)→ e−is( θ
2 y+ θ2

4 x)ψs(x, y + θx)

which implies for the fermion Green’s function

G(qx, qy) = G(sqx + q2
y).

Every point on the Fermi surface sqx+q2
y = 0 has the same

singularity: “Hot Fermi surface”.
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Emergent “Galilean invariance” at low energy (s = ±):

φ(x, y)→ φ(x, y + θx), ψs(x, y)→ e−is( θ
2 y+ θ2

4 x)ψs(x, y + θx)

which implies for the fermion Green’s function

G(qx, qy) = G(sqx + q2
y).

Line of singularities in momentum space
on the “hot” Fermi surface sqx + q2

y = 0.

“Hot” Fermi surfaces
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• Critical point is described by an infinite set of 2+1

dimensional field theories, one for each direction q̂.

• Contrast with “Fermi surface bosonization” methods

where there are an infinite set of 1+1 dimensional

field theories, one for each direction q̂.

• Our approach leads to a redundant description of

underlying degrees of freedom. The “Galilean sym-

metry” ensures consistency of redundant description.
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P(qx, qy)
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P(q�
x, q�

y)

q�
x = qx − κx + 2κy(qy − κy)

q�
y = qy − κy ,

where �k1 = (κx, κy) and κx + κ2
y = 0.
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P(q�
x, q�

y)

q�
x = qx − κx + 2κy(qy − κy)

q�
y = qy − κy ,

where �k1 = (κx, κy) and κx + κ2
y = 0.

Note q�
x + q�2

y = qx + q2
y: ensures compatibility

of redundant 2+1 dimensional field theories.
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L = ψ†
+

�
ζ∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
ζ∂τ + i∂x − ∂2

y

�
ψ−

− λφ
�
ψ†

+ψ+ + ψ†
−ψ−

�
+

1
2g

(∂yφ)2 +
r

2
φ2

After tuning the single parameter r ∼ λ − λc, and sending
ζ → 0, L describes a critical theory with no coupling constants.
There is a separate copy of this critical theory for each direction
q̂. This theory has 2 independent exponents z and η, and the
correlation length and susceptibility exponents are given by

ν =
1

z − 1
; γ = 1

The fermion and order parameter Green’s functions obey the
scaling forms

G(�q,ω) = ξ2−ηΦψ

�
(qx+q2y)ξ

2,ωξz
�

; D(�q,ω) = ξz−1Φφ

�
qyξ,ωξ

z
�

We have computed the exponents to three loops, and find z = 3
and η = 0.06824 at this order.
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Computations in the 1/N expansion

Sung-Sik Lee, Physical Review B 80, 165102 (2009)

All planar graphs of ψ+ alone
are as important as the leading

term
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Computations in the 1/N expansion

Sung-Sik Lee, Physical Review B 80, 165102 (2009)

All planar graphs of ψ+ alone
are as important as the leading

term

ψ+ ψ−

Graph mixing ψ+ and ψ−
isO

�
N3/2

�
(instead ofO (N)),

violating genus expansion
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Identified quantum criticality in cuprate 
superconductors with a critical point at optimal 

doping associated with onset of spin density 
wave order in a metal

     

Conclusions

Elusive optimal doping quantum critical 
point has been “hiding in plain sight”.

It is shifted to lower doping by the 
onset of superconductivity
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Conclusions

Theories for the 
onset of spin density 

wave and Ising-
nematic order in 
metals are strongly 

coupled in two 
dimensions
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