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The Hubbard Model
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t;; — “hopping”. U — local repulsion, ;¢ — chemical potential

Spin index a =1, |
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Will study on the square lattice



Fermi surfaces in electron- and hole-doped cuprates

<« | Hole
states
occupied\
@ Electron
\ 7<\ states
occupied [ T
D)

Effective Hamiltonian for quasiparticles:
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with ¢;; non-zero for first, second and third neighbor, leads to satisfactory agree-
ment with experiments. The area of the occupied electron states, A., from
Luttinger’s theory is

A - 214 (1 — x) for hole-doping x
© | 2n*(1+p) for electron-doping p

The area of the occupied hole states, Aj,, which form a closed Fermi surface and
so appear in quantum oscillation experiments is A, = 47 — A..



Fermi surfacetantiferromagnetism

Hole
states
occupied

Electron
states
occupied

+

The electron spin polarization obeys

where K is the ordering wavevector.
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Fermi surface+antiferromagnetism

We use the operator equation (valid on each site 7):

1 1\ W U

Then we decouple the interaction via

, } ) i -
exp (gZ/dTSZQ) = /DJi(’r) exp (—Z/d'r %J? — J;S; )

(2)

We now integrate out the fermions, and look for the saddle point of the
resulting effective action for J;. At the saddle-point we find that the lowest
energy is achieved when the vector has opposite orientations on the A and

B sublattices. Anticipating this, we look for a continuum limit in terms of
a field ¢; where

—

Ji =@ et (3)



Fermi surfacetantiferromagnetism

In this manner, we obtain the “spin-fermion” model
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Fermi surface+antiferromagnetism

In the Hamiltonian form (ignoring, for now, the time depen-
dence of ), the coupling between ¢ and the electrons takes the
form

Huw =X ) Pa" CfqalabChrK,s
k7q7a7/3

where ¢ are the Pauli matrices, the boson momentum q is small,
while the fermion momenum k extends over the entire Brillouin
zone. In the antiferromagnetically ordered state, we may take
¢ x (0,0,1) , and the electron dispersions obtained by diago-
nalizing Hy + Hgqyw are

2
Ek T €k+K €k — €k+K R
Ek:l:: 5 + i \/( 9 T > _|_>\2‘90‘2

This leads to the Fermi surfaces shown in the following slides
as a function of increasing |g|.



Fermi surfacetantiferromagnetism

Metal with “large” Fermi surface



Fermi surfacetantiferromagnetism

Fermi surfaces translated by K = (7, 7).



Fermi surfacetantiferromagnetism

“Hot” spots
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Square lattice Hubbard model with hole doping

< Increasing SDW order

S. Sachdev, A.V. Chubukoyv, and A. Sokol, Phys. Rev.B 51, 14874 (1995).
A.V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).



Square lattice Hubbard model with hole doping
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Square lattice Hubbard model with hole doping
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Square lattice Hubbard model with hole doping

< Increasing SDW order
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Fermi surface breaks up at hot spots
into electron and hole “pockets”

S. Sachdev, A.V. Chubukoyv, and A. Sokol, Phys. Rev.B 51, 14874 (1995).
A.V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).



Square lattice Hubbard model with hole doping
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Square lattice Hubbard model with hole doping
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Square lattice Hubbard model with electron doping
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Square lattice Hubbard model with no doping
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Fermi surfacetantiferromagnetism

Fermi surfaces translated by K = (7, 7).






Low energy theory for critical point near hot spots



Theory has fermions 11 o (with Fermi velocities vy o)
and boson order parameter ¢,

interacting with coupling A
Vi V2

1 fermions o fermions
occupied occupied

Ar.Abanov and A.V. Chubukoy, Phys. Rev. Lett. 93,255702 (2004).



1 fermions o fermions
occupied occupied

Ar.Abanov and A.V. Chubukoy, Phys. Rev. Lett. 93,255702 (2004).



“Cold” Fermi surfaces

Ar.Abanov and A.V. Chubukoy, Phys. Rev. Lett. 93,255702 (2004).



L = Dl (8r — vy - Vi) e + 08 (8- — iva - V) thaa

Order parameter: L, = (V@) + = (0;3)° + ~F + —¢

Ar.Abanov and A.V. Chubukoy, Phys. Rev. Lett. 93,255702 (2004).



Li = wi[a (0 —ivy1 - V)14 + w;a (Or —1ve - V) 1o,

1 1
Order parameter: L, = 5 (V,.3)" + 5 (8-3)° + 2952 + %@4
“Yukawa” coupling: L.=—\p- (@Dia&aﬁwzﬁ + ¢$a5a5w15>

Ar.Abanov and A.V. Chubukoy, Phys. Rev. Lett. 93,255702 (2004).



Metal with
“large” Fermi
surface

(8) =0

Fermion dispersions: g1 = vy -k and egos = vy - k



Li = wi[a (0 —ivy1 - V)14 + w;a (Or —1ve - V) 1o,

By

Ek+>0
Eyr_ <0

Fermion dispersions:
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Hertz action.

Upon integrating the fermions out, the leading term in the ¢ effective
action is —II(q, wy)|B(q, wn)|?, where II(q, w,) is the fermion polariz-
ability. This is given by a simple fermion loop diagram

dk [ de, L
g, wn) = / (2m) / 27 [—i(en +wn) + v1 - (k + q)][—ien + Vo - K]

We define oblique co-ordinates p; = v; - k and po = vy - k. It is
then clear that the integrand is independent of the (d — 2) transverse
momenta, whose integral yields an overall factor A~2 (in d = 2 this
factor is precisely 1).



Also, by shifting the integral over ki we note that the integral is
independent of g. So we have

/ dpldpszn 1
(g, wp) = . , .
’V1 X Vo 873 —i(€n + wn) + p1)|—i€n + P2

Next, we evaluate the frequency integral to obtain

(g, w,) / dpldpz sgn(p2) — sgn(pl)]
P ’Vl X VQ‘

_chn + P1 —
‘wn|Ad 2

4rlvy X val

In the last step, we have dropped a frequency-independent, cutofl-
dependent constant which can absorbed into a redefinition of r. In-
serting this fermion polarizability in the effective action for ¢, we
obtain the Hertz action for the SDW transition:

dek .
Si / TZ k2 + lwnl + 5] |Gk, wn)|?

+ 1 /dda:dT (95’2(:13,7'))2 .




Exercise: Perform a tree-level RG rescaling on Sy. Now we rescale
co-ordinates as &’ = xe * and 7 = Te ?*. Here z is the dynamic
critical exponent. Show that the gradient and non-local terms become
invariant for z = 2 (previous theories considered here had z = 1).

n

Then show that the transformation of the quartic term is v’ = ue(2=4~.

e

I'his led Hertz to conclude that the SDW quantum critical point was
described by a Gaussian theory for the SDW order parameter in d > 2.




Spin-fluctuation exchange theory of d-wave superconductivity

d -wave pairing near a spin-density-wave instability

D. J. Scalapino, E. Loh, Jr.,* and J. E. Hirsch'

Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
(Received 23 June 1986)

We investigate the three-dimensional Hubbard model and show that paramagnon exchange near
a spin-density-wave instability gives rise to a strong singlet d-wave pairing interaction. For a cu-
bic band the singlet (d,2_,: and d,2_,2) channels are enhanced while the singlet (dyy,dx:.dy:)
and triplet p-wave channels are suppressed. A unique feature of this pairing mechanism is its
sensitivity to band structure and band filling.

Physical Review B 34, 8190 (1986)



Spin-fluctuation exchange theory of d-wave superconductivity
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Spin-fluctuation exchange theory of d-wave superconductivity

Fermions at the large Fermi surface exchange
Hluctuations of the SDW order parameter .



Spin-fluctuation exchange theory of d-wave superconductivity

We now allow the SDW field ¢ to be dynamical, coupling to elec-
trons as

_ e =
Hyqw = — E , Pq * Ck,a9aBCk+K+q,5-
k,q,a,0

Exchange of a ¢ quantum leads to the effective interaction

:——> > D Vapas (@) o Cera 56 5 Cpmas

d p,v,0 k,o,0

where the pairing interaction is

Vagys(Q) = Gap - Oqs

with yp&? the SDW susceptibility and € the SDW correlation length.



Spin-fluctuation exchange theory of d-wave superconductivity

BCS Gap equation

In BCS theory, this interaction leads to the ‘gap
equation’ for the pairing gap Ak o (cxrc—k|)-

SX() A
T —
Z 24+ (p—k—K)? 2\/62—|—A2

Non-zero solutions of this equation require that
Ay and A, have opposite signs when p — k ~ K.
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Unconventional pairing at and near hot spots
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Pairing “glue” from antiferromagnetic fluctuations

V.]. Emery, J. Phys. (Paris) Colloq. 44, C3-977 (1983)

D.J. Scalapino, E. Loh, and |.E. Hirsch, Phys. Rev. B 34,8190 (1986)
K. Miyake, S. Schmitt-Rink, and C. M.Varma, Phys. Rev. B 34, 6554 (1986)
S. Raghu, S.A. Kivelson, and D.J. Scalapino, Phys. Rev. B 81,224505 (2010)



The theory for the onset of antiferromagnetism
in 2 metal flows to strong coupling in d=2



The theory for the onset of antiferromagnetism
in 2 metal flows to strong coupling in d=2

e Pairing glue becomes stronger. o



The theory for the onset of antiferromagnetism
in 2 metal flows to strong coupling in d=2

e Pairing glue becomes stronger.
g g g k“/

e There is stronger fermion-boson

scattering, and fermionic quasi-

particles lose their integrity:.



The theory for the onset of antiferromagnetism
in 2 metal flows to strong coupling in d=2
e Pairing glue becomes stronger. o

N
e There is stronger fermion-boson

scattering, and fermionic quasi-

particles lose their integrity:.

e Other instabilities can appear ;&
e.g. to density waves (next lec- :_/)
ture).



QMC for the onset of antiferromagnetism

Hot spots in a single band model



QMC for the onset of antiferromagnetism

E. Berg,

M. Metlitski, and
S. Sachdey,
Science 338, 1606
(2012).

Hot spots in a two band model



QMC for the onset of antiferromagnetism

Faithful

realization
of the

generic
universal
low

energy
theory for
the onset
of
antiferro-
magnetism

Hot spots in a two band model

E. Berg,

M. Metlitski, and
S. Sachdey,
Science 338, 1606
(2012).



QMC for the onset of antiferromagnetism

Sign
problem is
absent as
long as K

connects
hotspots in
distinct
bands

Hot spots in a two band model

E. Berg,

M. Metlitski, and
S. Sachdey,
Science 338, 1606
(2012).



QMC for the onset of antiferromagnetism

Sign
problem is
absent as
long as K

connects
hotspots in
distinct
bands

E. Berg,

M. Metlitski, and
S. Sachdey,
Science 338, 1606
(2012).

Requires only
time-reversal
symmetry.
Particle-hole or

point-group
symmetries or
commensurate

densities not

required !

Hot spots in a two band mod



QMC for the onset of antiferromagnetism

Electrons with dispersion ey
interacting with fluctuations of the
antiferromagnetic order parameter .
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QMC for the onset of antiferromagnetism

Electrons with dispersions sl(f) and 61({y)

interacting with fluctuations of the
antiferromagnetic order parameter .

E. Berg,
/ D DY DG exp (—S) M. Metlitski, and
S.Sachdey,
Science 338, 1606
_ /dTZCI({agT ( (iv)> 01(52 (2012).

+ [ mzq&zz*( 1) 4

1 1 | No sign problem !

2
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QMC for the onset of antiferromagnetism

Electrons with dispersions sl(f) and 61({y)

interacting with fluctuations of the
antiferromagnetic order parameter .

E. Berg,
/ D DY DG exp (—S) M. Metlitski, and
S.Sachdey,
Science 338, 1606
_ /dTZCI({agT ( (iv)> C}({ﬂ;) (2012).

Applies without
changes to the
microscopic band
structure in the
iron-based
superconductors

v far el (5 -e2)
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—A/dTZgO@ ) ,EZ)TEagc%) + H.c.




QMC for the onset of antiferromagnetism

Electrons with dispersions sl(f) and 61({y)

interacting with fluctuations of the
antiferromagnetic order parameter .

E. Berg,

/ D DY DG exp (—S) M. Metlitski, and

S. Sachdey,
Science 338, 1606

_ /dTZCI({CgT< (:c) 01(52 (2012).

Can integrate out ¢ to

. obtain an extended
b [ar Sl (5~ ) eld | b mod T

k interactions in this model
1 . r 7 | only couple electrons in
+ / deQI 5 (Vxﬁ) + 5@)2 + ... separate bands.

—A/dTZgO@ ) EZ)TEagc%) + H.c.



QMC for the onset of antiferromagnetism

E. Berg,

M. Metlitski, and
S. Sachdey,
Science 338, 1606
(2012).

Hot spots in a two band model



QMC for the onset of antiferromagnetism
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Center Brillouin zone at (mt,m,)



QMC for the onset of antiferromagnetism
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Move one of the Fermi surface by (m,m,)



QMC for the onset of antiferromagnetism

1
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Now hot spots are at Fermi surface intersections



QMC for the onset of antiferromagnetism
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Expected Fermi surfaces in the AFM ordered phase



QMC for the onset of antiferromagnetism

r=-0.5 r=0 r=0.5
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Electron occupation number ny
as a function of the tuning parameter r

E. Berg, M. Metlitski, and S. Sachdey, Science 338, 1606 (2012).



QMC for the onset of antiferromagnetism
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AF susceptibility, x., and Binder cumulant
as a function of the tuning parameter r

E. Berg, M. Metlitski, and S. Sachdey, Science 338, 1606 (2012).



QMC for the onset of antiferromagnetism
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s/d pairing amplitudes P, /P_
as a function of the tuning parameter r

E. Berg, M. Metlitski, and S. Sachdey, Science 338, 1606 (2012).



Quantum phase transition with onset of
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Quantum phase transition with onset of
antiferromagnetism in a metal

Find new instabilities
upon approaching
critical point
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Quantum phase transition with onset of
antiferromagnetism in a metal
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