The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

Niels Bohr Institute, Copenhagen, May 6, 2010

Talk online: sachdev.physics.harvard.edu

Max Metlitski, Harvard arXiv:1001.1153

Eun Gook Moon, Harvard

Phys. Rev. B **80**, 035117 (2009)

<u>Outline</u>

I. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity

2. Theory of spin density wave ordering in a metal Strong-coupling in d=2

3. Instabilities near SDW critical point d-wave pairing and bond density wave

<u>Outline</u>

I. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity

2. Theory of spin density wave ordering in a metal Strong-coupling in d=2

3. Instabilities near SDW critical point d-wave pairing and bond density wave

Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface

Antiferromagnetism

d-wave superconductivity

Fermi surface+antiferromagnetism

The electron spin polarization obeys

$$\left\langle \vec{S}(\mathbf{r},\tau) \right\rangle = \vec{\varphi}(\mathbf{r},\tau)e^{i\mathbf{K}\cdot\mathbf{r}}$$

where \mathbf{K} is the ordering wavevector.

Fermi surfaces in electron- and hole-doped cuprates

Effective Hamiltonian for quasiparticles:

$$H_0 = -\sum_{i < j} t_{ij} c_{i\alpha}^{\dagger} c_{i\alpha} \equiv \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}\alpha}$$

with t_{ij} non-zero for first, second and third neighbor, leads to satisfactory agreement with experiments. The area of the occupied electron states, \mathcal{A}_e , from Luttinger's theory is

$$\mathcal{A}_e = \begin{cases} 2\pi^2(1-p) & \text{for hole-doping } p\\ 2\pi^2(1+x) & \text{for electron-doping } x \end{cases}$$

The area of the occupied hole states, \mathcal{A}_h , which form a closed Fermi surface and so appear in quantum oscillation experiments is $\mathcal{A}_h = 4\pi^2 - \mathcal{A}_e$.

Spin density wave theory

In the presence of spin density wave order, $\vec{\varphi}$ at wavevector $\mathbf{K} = (\pi, \pi)$, we have an additional term which mixes electron states with momentum separated by \mathbf{K}

$$H_{\rm sdw} = \vec{\varphi} \cdot \sum_{\mathbf{k},\alpha,\beta} c_{\mathbf{k},\alpha} \vec{\sigma}_{\alpha\beta} c_{\mathbf{k}+\mathbf{K},\beta}$$

where $\vec{\sigma}$ are the Pauli matrices. The electron dispersions obtained by diagonalizing $H_0 + H_{\rm sdw}$ for $\vec{\varphi} \propto (0, 0, 1)$ are

$$E_{\mathbf{k}\pm} = \frac{\varepsilon_{\mathbf{k}} + \varepsilon_{\mathbf{k}+\mathbf{K}}}{2} \pm \sqrt{\left(\frac{\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{k}+\mathbf{K}}}{2}\right) + \varphi^2}$$

This leads to the Fermi surfaces shown in the following slides for electron and hole doping.

S. Sachdev, A.V. Chubukov, and A. Sokol, *Phys. Rev. B* **51**, 14874 (1995). A.V. Chubukov and D. K. Morr, *Physics Reports* **288**, 355 (1997).

S. Sachdev, A.V. Chubukov, and A. Sokol, *Phys. Rev. B* **51**, 14874 (1995). A.V. Chubukov and D. K. Morr, *Physics Reports* **288**, 355 (1997).

S. Sachdev, A.V. Chubukov, and A. Sokol, *Phys. Rev. B* **51**, 14874 (1995). A.V. Chubukov and D. K. Morr, *Physics Reports* **288**, 355 (1997).

Fermi surface breaks up at hot spots into electron and hole "pockets"

S. Sachdev, A.V. Chubukov, and A. Sokol, *Phys. Rev. B* **51**, 14874 (1995). A.V. Chubukov and D. K. Morr, *Physics Reports* **288**, 355 (1997).

Fermi surface breaks up at hot spots into electron and hole "pockets"

S. Sachdev, A.V. Chubukov, and A. Sokol, *Phys. Rev. B* **51**, 14874 (1995). A.V. Chubukov and D. K. Morr, *Physics Reports* **288**, 355 (1997).

Evidence for small Fermi pockets

FIG. 2: Magnetic quantum oscillations measured in $YBa_2Cu_3O_{6+x}$ with $x \approx 0.56$ (after background polynomial subtraction). This restricted interval in $B = |\mathbf{B}|$ furnishes a dynamic range of ~ 50 dB between T = 1 and 18 K. The actual T values are provided in Fig. 3.

Fermi liquid behaviour in an underdoped high Tc superconductor

Suchitra E. Sebastian, N. Harrison, M. M. Altarawneh, Ruixing Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich

arXiv:0912.3022

Similar phase diagram for CeRhIn₅

G. Knebel, D. Aoki, and J. Flouquet, arXiv:0911.5223

Similar phase diagram for the pnictides

S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler, N. Ni, S. L. Bud'ko, P. C. Canfield, J. Schmalian, R. J. McQueeney, A. I. Goldman, arXiv:0911.3136.

<u>Outline</u>

I. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity

2. Theory of spin density wave ordering in a metal Strong-coupling in d=2

3. Instabilities near SDW critical point d-wave pairing and bond density wave

<u>Outline</u>

I. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity

2. Theory of spin density wave ordering in a metal Strong-coupling in d=2

3. Instabilities near SDW critical point d-wave pairing and bond density wave

Theory of quantum criticality in the cuprates

Hole-doped cuprates

Large Fermi surface breaks up into electron and hole pockets

S. Sachdev, A.V. Chubukov, and A. Sokol, *Phys. Rev. B* **51**, 14874 (1995). A.V. Chubukov and D. K. Morr, *Physics Reports* **288**, 355 (1997).

Hole-doped cuprates

$\vec{\varphi}$ fluctuations act on the large Fermi surface

S. Sachdev, A.V. Chubukov, and A. Sokol, *Phys. Rev. B* **51**, 14874 (1995). A.V. Chubukov and D. K. Morr, *Physics Reports* **288**, 355 (1997).

Start from the "spin-fermion" model

$$\begin{split} \mathcal{Z} &= \int \mathcal{D}c_{\alpha}\mathcal{D}\vec{\varphi}\exp\left(-\mathcal{S}\right) \\ \mathcal{S} &= \int d\tau \sum_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} \left(\frac{\partial}{\partial\tau} - \varepsilon_{\mathbf{k}}\right) c_{\mathbf{k}\alpha} \\ &- \lambda \int d\tau \sum_{i} c_{i\alpha}^{\dagger}\vec{\varphi}_{i} \cdot \vec{\sigma}_{\alpha\beta} c_{i\beta} e^{i\mathbf{K}\cdot\mathbf{r}_{i}} \\ &+ \int d\tau d^{2}r \left[\frac{1}{2} \left(\mathbf{\nabla}_{r}\vec{\varphi}\right)^{2} + \frac{\widetilde{\zeta}}{2} \left(\partial_{\tau}\vec{\varphi}\right)^{2} + \frac{s}{2}\vec{\varphi}^{2} + \frac{u}{4}\vec{\varphi}^{4}\right] \end{split}$$

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$
$$\mathbf{v}_{1}^{\ell=1} = (v_{x}, v_{y}), \ \mathbf{v}_{2}^{\ell=1} = (-v_{x}, v_{y})$$

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\nabla_r \vec{\varphi} \right)^2 + \frac{\zeta}{2} \left(\partial_\tau \vec{\varphi} \right)^2 + \frac{s}{2} \vec{\varphi}^2 + \frac{u}{4} \vec{\varphi}^4$$

 \sim

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\boldsymbol{\nabla}_{r} \vec{\varphi} \right)^{2} + \frac{\zeta}{2} \left(\partial_{\tau} \vec{\varphi} \right)^{2} + \frac{s}{2} \vec{\varphi}^{2} + \frac{u}{4} \vec{\varphi}^{4}$$

"Yukawa" coupling: $\mathcal{L}_c = -\lambda \vec{\varphi} \cdot \left(\psi_{1\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta}^{\ell} \right)$

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \nabla_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \nabla_{r} \right) \psi_{2\alpha}^{\ell}$$
Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\nabla_{r} \vec{\varphi} \right)^{2} + \frac{\widetilde{\zeta}}{2} \left(\partial_{\tau} \vec{\varphi} \right)^{2} + \frac{s}{2} \vec{\varphi}^{2} + \frac{u}{4} \vec{\varphi}^{4}$$
"Yukawa" coupling:
$$\mathcal{L}_{c} = -\lambda \vec{\varphi} \cdot \left(\psi_{1\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta}^{\ell} \right)$$
Hertz theory
Integrate out fermions and obtain non-local corrections to \mathcal{L}_{φ}

$$\mathcal{L}_{\varphi} = \frac{1}{2} \vec{\varphi}^{2} \left[\mathbf{q}^{2} + \gamma |\omega| \right] / 2 \qquad ; \qquad \gamma = \frac{2}{\pi v_{x} v_{y}}$$

Exponent z = 2 and mean-field criticality (upto logarithms)

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \nabla_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \nabla_{r} \right) \psi_{2\alpha}^{\ell}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\nabla_{r} \vec{\varphi} \right)^{2} + \frac{\tilde{\zeta}}{2} \left(\partial_{\tau} \vec{\varphi} \right)^{2} + \frac{s}{2} \vec{\varphi}^{2} + \frac{u}{4} \vec{\varphi}^{4}$$

"Yukawa" coupling:
$$\mathcal{L}_{c} = -\lambda \vec{\varphi} \cdot \left(\psi_{1\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta}^{\ell} \right)$$

Hertz theory
Integrate out fermions and obtain non-local corrections to \mathcal{L}_{φ}

$$\mathcal{L}_{\varphi} = \frac{1}{2} \vec{\varphi}^{2} \left[\mathbf{q}^{2} + \gamma |\omega| \right] / 2 \qquad ; \qquad \gamma = \frac{2}{\pi v_{x} v_{y}}$$

Exponent z = 2 and mean-field criticality (upto logarithms) OK in d = 3, but higher order terms contain an infinite number of marginal couplings in d = 2Ar. Abanov and A.V. Chubukov, *Phys. Rev. Lett.* **93**, 255702 (2004).

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\boldsymbol{\nabla}_r \vec{\varphi} \right)^2 + \frac{\zeta}{2} \left(\partial_\tau \vec{\varphi} \right)^2 + \frac{s}{2} \vec{\varphi}^2 + \frac{u}{4} \vec{\varphi}^4$$

"Yukawa" coupling: $\mathcal{L}_c = -\lambda \vec{\varphi} \cdot \left(\psi_{1\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta}^{\ell} \right)$

Perform RG on both fermions and $\vec{\varphi}$, using a *local* field theory.

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\boldsymbol{\nabla}_{r} \vec{\varphi} \right)^{2} + \frac{\widetilde{\zeta}}{2} \left(\partial_{\tau} \vec{\varphi} \right)^{2} + \frac{s}{2} \vec{\varphi}^{2} + \frac{u}{4} \vec{\varphi}^{4}$$

"Yukawa" coupling:
$$\mathcal{L}_{c} = -\lambda \vec{\varphi} \cdot \left(\psi_{1\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta}^{\ell} \right)$$

Under the rescaling $x' = xe^{-\ell}$, $\tau' = \tau e^{-z\ell}$, the spatial gradients are fixed if the fields transform as

$$\vec{\varphi}' = e^{(d+z-2)\ell/2} \vec{\varphi} \quad ; " \psi' = e^{(d+z-1)\ell/2} \psi.$$

Then the Yukawa coupling transforms as

$$\lambda' = e^{(4-d-z)\ell/2}\lambda$$

For d = 2, with z = 2 the Yukawa coupling is invariant, and the bare time-derivative terms ζ , $\tilde{\zeta}$ are irrelevant.

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\boldsymbol{\nabla}_{r} \vec{\varphi} \right)^{2} + \frac{\widetilde{\zeta}}{2} \left(\partial_{\tau} \vec{\varphi} \right)^{2} + \frac{s}{2} \vec{\varphi}^{2} + \frac{u}{4} \vec{\varphi}^{4}$$

"Yukawa" coupling:
$$\mathcal{L}_{c} = -\vec{\varphi} \cdot \left(\psi_{1\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta}^{\ell} \right)$$

Set $\vec{\varphi}$ wavefunction renormalization by
keeping co-efficient of $(\boldsymbol{\nabla}_{r} \vec{\varphi})^{2}$ fixed (as usual).

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\boldsymbol{\nabla}_{r} \vec{\varphi} \right)^{2} + \frac{\zeta}{2} \left(\partial_{\tau} \vec{\varphi} \right)^{2} + \frac{s}{2} \vec{\varphi}^{2} + \frac{u}{4} \vec{\varphi}^{4}$$

"Yukawa" coupling:

$$\mathcal{L}_{c} = -\vec{\varphi} \cdot \left(\psi_{1\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta}^{\ell}\right)$$

Set fermion wavefunction renormalization by keeping Yukawa coupling fixed.

Y. Huh and S. Sachdev, Phys. Rev. B 78, 064512 (2008).

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\boldsymbol{\nabla}_{r} \vec{\varphi} \right)^{2} + \frac{\zeta}{2} \left(\partial_{\tau} \vec{\varphi} \right)^{2} + \frac{s}{2} \vec{\varphi}^{2} + \frac{u}{4} \vec{\varphi}^{4}$$

"Yukawa" coupling: $\mathcal{L}_c = -\vec{\varphi} \cdot \left(\psi_{1\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta}^{\ell}\right)$

We find consistent two-loop RG factors, as $\zeta \to 0$, for the velocities v_x , v_y , and the wavefunction renormalizations.

Consistency check: the expression for the boson damping constant, $\gamma = \frac{2}{\pi v_x v_y}$, is preserved under RG.

x

Bare Fermi surface

RG-improved Migdal-Eliashberg theory $\alpha = v_y/v_x \rightarrow 0$ logarithmically in the infrared.Dynamical Nesting

y

x

Dressed Fermi surface

x

Bare Fermi surface

RG-improved Migdal-Eliashberg theory

 $\alpha = v_y/v_x \rightarrow 0$ logarithmically in the infrared. Dynamical Nesting

Dressed Fermi surface

RG-improved Migdal-Eliashberg theory

 $\alpha = v_y/v_x \rightarrow 0$ logarithmically in the infrared.

In $\vec{\varphi}$ SDW fluctuations, characteristic q and ω scale as

$$q \sim \omega^{1/2} \exp\left(-\frac{3}{64\pi^2} \left(\frac{\ln(1/\omega)}{N}\right)^3\right).$$

However, 1/N expansion cannot be trusted in the asymptotic regime.

<u>Outline</u>

I. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity

2. Theory of spin density wave ordering in a metal Strong-coupling in d=2

3. Instabilities near SDW critical point d-wave pairing and bond density wave

<u>Outline</u>

I. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity

2. Theory of spin density wave ordering in a metal Strong-coupling in d=2

3. Instabilities near SDW critical point *d-wave pairing and bond density wave*

Hot spots have strong instability to *d*-wave pairing near SDW critical point. This instability is stronger than the BCS instability of a Fermi liquid.

Pairing order parameter:

 $\varepsilon^{\alpha\beta} \left(\psi^3_{1\alpha} \psi^1_{1\beta} - \psi^3_{2\alpha} \psi^1_{2\beta} \right)$

d-wave Cooper pairing instability in particle-particle channel

Continuum theory of hotspots in invariant under:

$$\left(\begin{array}{c}\psi_{\uparrow}^{\ell}\\\psi_{\downarrow}^{\ell\dagger}\end{array}\right) \to U^{\ell} \left(\begin{array}{c}\psi_{\uparrow}^{\ell}\\\psi_{\downarrow}^{\ell\dagger}\end{array}\right)$$

where U^{ℓ} are arbitrary SU(2) matrices which can be *different* on different hotspots ℓ .

d-wave Cooper pairing instability in particle-particle channel

Bond density wave (with local Ising-nematic order) instability in particle-hole channel

d-wave pairing has a partner instability in the particle-hole channel

Density-wave order parameter:

 $\left(\psi_{1\alpha}^{3\dagger}\psi_{1\alpha}^{1}-\psi_{2\alpha}^{3\dagger}\psi_{2\alpha}^{1}\right)$

No modulations on sites. Modulated bond-density wave with local Ising-nematic ordering:

$$\left\langle c_{\mathbf{k}-\mathbf{Q}/2,\alpha}^{\dagger}c_{\mathbf{k}+\mathbf{Q}/2,\alpha}\right\rangle = \Phi(\cos k_x - \cos k_y)$$

No modulations on sites. Modulated bond-density wave with local Ising-nematic ordering:

$$\left\langle c_{\mathbf{k}-\mathbf{Q}/2,\alpha}^{\dagger}c_{\mathbf{k}+\mathbf{Q}/2,\alpha}\right\rangle = \Phi(\cos k_x - \cos k_y)$$

STM measurements of Z(r), the energy asymmetry in density of states in Bi₂Sr₂CaCu₂O_{8+ δ}.

M. J. Lawler, K. Fujita, Jhinhwan Lee,
A. R. Schmidt,
Y. Kohsaka, Chung Koo Kim, H. Eisaki,
S. Uchida, J. C. Davis,
J. P. Sethna, and
Eun-Ah Kim, preprint
STM measurements of Z(r), the energy asymmetry in density of states in Bi₂Sr₂CaCu₂O_{8+ δ}.

M. J. Lawler, K. Fujita, Jhinhwan Lee,
A. R. Schmidt,
Y. Kohsaka, Chung Koo Kim, H. Eisaki,
S. Uchida, J. C. Davis,
J. P. Sethna, and
Eun-Ah Kim, preprint

STM measurements of Z(r), the energy asymmetry in density of states in Bi₂Sr₂CaCu₂O_{8+ δ}.

M. J. Lawler, K. Fujita, Jhinhwan Lee,
A. R. Schmidt,
Y. Kohsaka, Chung Koo Kim, H. Eisaki,
S. Uchida, J. C. Davis,
J. P. Sethna, and
Eun-Ah Kim, preprint

 $O_N = Z_A + Z_B - Z_C - Z_D$

Strong anisotropy of electronic states between x and y directions: Electronic "Ising-nematic" order

Conclusions

Identified quantum criticality in cuprate superconductors with a critical point at optimal doping associated with onset of spin density wave order in a metal

Elusive optimal doping quantum critical point has been "hiding in plain sight".

It is shifted to lower doping by the onset of superconductivity

Conclusions

Theory for the onset of spin density wave in metals is <u>strongly</u> coupled in two dimensions For the cuprate Fermi surface, there are strong instabilities near the quantum critical point to <u>d</u>-wave pairing <u>and</u> bond density waves with local Ising-nematic ordering