Many body quantum entanglement: from organic insulators to ultracold atoms

sachdev.physics.harvard.edu

<u>Outline</u>

I. Organic insulators: antiferromagnets on the triangular lattice

2. Ultracold atoms: bosons in tilted Mott insulators

<u>Outline</u>

I. Organic insulators: antiferromagnets on the triangular lattice

2. Ultracold atoms: bosons in tilted Mott insulators

$X[Pd(dmit)_2]_2$

X Pd(dmit)₂

Half-filled band \rightarrow Mott insulator with spin S = 1/2 Triangular lattice of [Pd(dmit)₂]₂ \rightarrow frustrated quantum spin system

Anisotropic triangular lattice antiferromagnet

Anisotropic triangular lattice antiferromagnet

$\frac{\text{Observation of a valence bond solid (VBS) in}}{\text{ETMe}_{3}\text{P}[\text{Pd}(\text{dmit})_{2}]_{2}}$

M. Tamura, A. Nakao and R. Kato, J. Phys. Soc. Japan **75**, 093701 (2006) Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, Phys. Rev. Lett. **99**, 256403 (2007)

Magnetic Criticality

Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007)

Excitations of the Z_2 Spin liquid

<u>A vison</u>

- A characteristic property of a Z_2 spin liquid is the presence of a spinon pair condensate
- A vison is an Abrikosov vortex in the pair condensate of spinons
- Visons are are the <u>dark matter</u> of spin liquids: they likely carry most of the energy, but are very hard to detect because they do not carry charge or spin.

Effective description of Z_2 spin liquids, their visons and valence bond solids

Quantum dimer model:

Hilbert space - set of dimer coverings of triangular/square lattice

D. Rokhsar and S.A. Kivelson, *Phys. Rev. Lett.* **61**, 2376 (1988) R. Moessner and S. L. Sondhi, *Phys. Rev. Lett.* **86**, 1881 (2001)

<u>Outline</u>

I. Organic insulators: antiferromagnets on the triangular lattice

2. Ultracold atoms: bosons in tilted Mott insulators

<u>Outline</u>

I. Organic insulators: antiferromagnets on the triangular lattice

Ultracold atoms:
bosons in tilted Mott insulators

Susanne Pielawa

Takuya Kitagawa

Erez Berg

S. Sachdev, K. Sengupta, and S.M. Girvin, Phys. Rev. B 66, 075128 (2002) S. Pielawa, T. Kitagawa, E. Berg, S. Sachdev, arXiv:1101.2897

Superfluid-insulator transition of ⁸⁷Rb atoms in a magnetic trap and an optical lattice potential

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, *Nature* **415**, 39 (2002).

Mott insulator of ⁸⁷Rb atoms in a magnetic trap and an optical lattice potential

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, *Nature* **415**, 39 (2002).

Applying an "electric" field to the Mott insulator

Why is there a peak (and not a threshold) when E = U ?

$$H = -t \sum_{\langle ij \rangle} \left(b_i^{\dagger} b_j + b_j^{\dagger} b_i \right) + \frac{U}{2} \sum_i n_i \left(n_i - 1 \right) - \sum_i \mathbf{E} \cdot \mathbf{r}_i n_i$$
$$n_i = b_i^{\dagger} b_i$$

$$|U - E|, t \ll E, U$$

Resonant transition when $E \approx U$

Virtual state

Virtual state

Resonant transition when $E \approx U$

Resonant transition when $E \approx U$

max one dipole per site:

 $\hat{d}_i^{\dagger} \hat{d}_i \leq 1$

no neighboring dipoles:

 $\hat{d}_{i}^{\dagger}\hat{d}_{i}\hat{d}_{i+1}^{\dagger}\hat{d}_{i+1} = 0$

Thursday, March 10, 2011

Constraints:

max one dipole per site:

 $\hat{d}_i^{\dagger} \hat{d}_i \leq 1$

no neighboring dipoles:

 $\hat{d}_{i}^{\dagger}\hat{d}_{i}\hat{d}_{i+1}^{\dagger}\hat{d}_{i+1} = 0$

Thursday, March 10, 2011

Constraints:

Phase diagram of dipole model

S. Sachdev, K. Sengupta, and S.M. Girvin, Phys. Rev. B 66, 075128 (2002)

Phase diagram of dipole model

S. Sachdev, K. Sengupta, and S.M. Girvin, Phys. Rev. B 66, 075128 (2002)

Paramagnetic state

degenerate

Antiferromagnetic state, two fold degenerate

Phase diagram of spin model

hx =0: classical first order phase transition Finite hx: quantum phase transition, second order

Quantum gas microscope

High fidelity single atom single site imaging

- First: Many-body physics in conservative lattice potential
- Then: increase lattice depth, fluorescence imaging

Optical Molasses during imaging

High resolution imaging

High aperture objective NA=0.8 Solid immersion lens in vacuum

Quantum gas microscope

High fidelity single atom single site imaging

- First: Many-body physics in conservative lattice potential
- Then: increase lattice depth, fluorescence imaging

Optical Molasses during imaging

Bakr *et al.*, Nature 462, 74 (2009) Bakr *et al.*, Science.1192368 (June 2010)

High resolution imaging

High aperture objective NA=0.8 Solid immersion lens in vacuum
Bakr et al., Nature 462, 74 (2009) Bakr et al., Science.1192368 (June 2010)

Quantum gas microscope

Bakr et al., Nature 462, 74 (2009) Bakr et al., Science.1192368 (June 2010)

antiferromagnetic ground state

- Expand within each 1D tube, detect individual atoms, and calculate correlation function
- See Foelling et al., Nature 434, 481–484 (2005)

e

Susanne Pielawa

Susanne Pielawa

e

Susanne Pielawa

e

Configurations map onto dimer coverings of the square lattice !

Then create a different set of 3's

Then create a different set of 3's

A different dimer covering

Susanne Pielawa

e

Dimers can resonate around a plaquette

Susanne Pielawa

e

Dimers can resonate around a plaquette

Susanne Pielawa

e

Strong tilt: effective quantum dimer model
Conclusions

Many common issues on many body quantum correlations in condensed matter and ultracold atoms

States with interesting quantum entanglement