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Half-filled band à Mott insulator with spin S = 1/2
Triangular lattice of [Pd(dmit)2]2 

 à frustrated quantum spin system

X[Pd(dmit)2]2 Pd SC

X Pd(dmit)2

t’
t
t
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H =
�

�ij�

Jij
�Si · �Sj + . . .

H = J

�

�ij�

�Si · �Sj ; �Si ⇒ spin operator with S = 1/2
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Found in    -(ET)2Cu[N(CN)2]Clκ

Anisotropic triangular lattice antiferromagnet

Classical ground state for small J’/J
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Anisotropic triangular lattice antiferromagnet

Classical ground state for large J’/J
Found in ETMe3P[Pd(dmit)2]2 and Cs2CuCl4
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Valence bond solid

Anisotropic triangular lattice antiferromagnet

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)
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M. Tamura, A. Nakao and R. Kato, J. Phys. Soc. Japan 75, 093701 (2006)
Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, Phys. Rev. Lett. 99, 256403 (2007) 

Observation of a valence bond solid (VBS) in 
ETMe3P[Pd(dmit)2]2

Spin gap ~ 40 K
  J ~ 250 K

X-ray scattering
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Magnetic Criticality

t’/t

T N
 (K

)

Magnetic order

Quantum 
critical

Spin gap

Me4P

Me4As

EtMe3As

Et2Me2As Me4Sb

Et2Me2P

EtMe3Sb

EtMe3P
t’/t = 1.05

Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007) 

X[Pd(dmit)2]2
Et2Me2Sb (CO)

VBS 
order
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Triangular lattice antiferromagnet

Z2 spin liquid 

P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
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=

Triangular lattice antiferromagnet

Z2 spin liquid 

P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Candidate for a
Z2 spin liquid:

κ-(ET)2Cu2(CN)3
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Excitations of the Z2 Spin liquid

A vison 

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Thursday, March 10, 2011



=

-1

Excitations of the Z2 Spin liquid

A vison 

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Thursday, March 10, 2011



=

-1

Excitations of the Z2 Spin liquid

A vison 

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Thursday, March 10, 2011



=

-1

Excitations of the Z2 Spin liquid

A vison 

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Thursday, March 10, 2011



=

-1

-1

Excitations of the Z2 Spin liquid

A vison 

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Thursday, March 10, 2011



=

-1

-1

Excitations of the Z2 Spin liquid

A vison 

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

Thursday, March 10, 2011



• A characteristic property of a Z2 spin liquid
is the presence of a spinon pair condensate

• A vison is an Abrikosov vortex in the pair
condensate of spinons

• Visons are are the dark matter of spin liq-
uids: they likely carry most of the energy,
but are very hard to detect because they do
not carry charge or spin.

Excitations of the Z2 Spin liquid

A vison 

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
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Effective description of Z2 spin liquids, their 
visons and valence bond solids

Quantum dimer model:

D. Rokhsar and S. A. Kivelson, Phys. Rev. Lett.  61, 2376 (1988)
R. Moessner and S. L. Sondhi,  Phys. Rev. Lett. 86, 1881 (2001)

H =V

�����

�� �����+ V

�����

�� �����

− J

�����

�� �����− J

�����

�� �����

Hilbert space - set of dimer coverings of triangular/square lattice
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Susanne
Pielawa

Takuya
Kitagawa

Erez
Berg

S. Sachdev, K. Sengupta, and S.M. Girvin, Phys. Rev. B 66, 075128 (2002)
S. Pielawa, T. Kitagawa, E. Berg, S. Sachdev, arXiv:1101.2897
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M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, 
Nature 415, 39 (2002).

Superfluid-insulator transition of 87Rb atoms in a magnetic trap 
and an optical lattice potential

Thursday, March 10, 2011



M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, 
Nature 415, 39 (2002).

Mott insulator of 87Rb atoms in a magnetic trap and an optical 
lattice potential
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Applying an “electric” field to the Mott insulator
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Why is there 
a peak (and 

not a 
threshold) 

when E = U ?
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Resonant transition when E≈U
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Virtual state
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Resonant transition when E≈U
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Hamiltonian of resonant subspace
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Ĥ = −
√

2t

�

i

�
d̂
†
i + d̂i
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+ ∆

�

i

d̂
†
i d̂i

∆ = U − E

Hamiltonian of resonant subspace

dipole
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†
i d̂i

∆ = U − E

Hamiltonian of resonant subspace

d̂†i d̂i ≤ 1 d̂†i d̂id̂
†
i+1d̂i+1 = 0

no neighboring dipoles:max one dipole per site:
Constraints:

dipole
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Ĥ = −
√

2t
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i
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d̂
†
i + d̂i
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d̂
†
i d̂i

∆ = U − E

Hamiltonian of resonant subspace

d̂†i d̂i ≤ 1 d̂†i d̂id̂
†
i+1d̂i+1 = 0

no neighboring dipoles:max one dipole per site:
Constraints:

dipole

Strong off-
site quantum 
correlations
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Phase diagram of dipole model

(E-U)/t

S. Sachdev, K. Sengupta, and S.M. Girvin, Phys. Rev. B 66, 075128 (2002)
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(E-U)/t
Ising quantum 

phase transition

S. Sachdev, K. Sengupta, and S.M. Girvin, Phys. Rev. B 66, 075128 (2002)

Phase diagram of dipole model
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Effective Hamiltonian can be 
written as spin model

=          x-y plane

=        up

=        down

Hamiltonian of resonant subspace
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Effective Hamiltonian can be 
written as spin model

=          x-y plane

=        up

=        down

forbidden !

Constraint:

Hamiltonian of resonant subspace
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Include a term J
�

i

�
Sz
i − 1

2

� �
Sz
i+1 − 1

2

�

and send J → ∞. Infinite exchange interaction !

Effective Hamiltonian can be 
written as spin model

=          x-y plane

=        up

=        down

forbidden !

Constraint:

Hamiltonian of resonant subspace
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Effective Hamiltonian can be 
written as spin model

Δ=E-U <0

Paramagnetic state

Hamiltonian of resonant subspace
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Effective Hamiltonian can be 
written as spin model

Δ=E-U > 0

Antiferromagnetic state, two fold 
degenerate

Hamiltonian of resonant subspace
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Antiferromagnetic state, two fold 
degenerate

+

Hamiltonian of resonant subspace
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hx =0: classical first order phase transition
Finite hx: quantum phase transition, second order

Phase diagram of spin model

hz/J

hx/J

H =
�

i

�
JS

z
i S

z
i+1

− hzS
z
i − hxS

x
i

�

J → ∞,

hz = J + (U − E),

hx = 2
√
2t
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Quantum gas microscope

High aperture 
objective
NA=0.8 
Solid immersion lens
in vacuum

High fidelity single 
atom single site 
imaging
• First: Many-body 

physics in 
conservative lattice 
potential

• Then: increase 
lattice depth, 
fluorescence 
imaging

Optical 
Molasses 
during imaging

High resolution 
imaging

2D quantum gas
in optical lattice
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Quantum gas microscope

High aperture 
objective
NA=0.8 
Solid immersion lens
in vacuum

High fidelity single 
atom single site 
imaging
• First: Many-body 

physics in 
conservative lattice 
potential

• Then: increase 
lattice depth, 
fluorescence 
imaging

Optical 
Molasses 
during imaging

High resolution 
imaging

2D quantum gas
in optical lattice

Bakr et al., Nature 462, 74 
(2009)

Bakr et al., Science.1192368 
(June 2010)
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Bakr et al., Nature 462, 74 (2009)
Bakr et al., Science.1192368 (June 
2010)
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Bakr et al., Nature 462, 74 (2009)
Bakr et al., Science.1192368 (June 
2010)

Quantum gas microscope
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• Expand within each 1D tube, detect individual atoms, 
and calculate correlation function

• See Foelling et al., Nature 434, 481-484 (2005)
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Tilting a decorated square lattice

Susanne
Pielawa
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Strong tilt: maximize sites 
with 2 bosons
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e

Tilting a decorated square lattice

Maximum number of 2’s
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Can also get some 3’s from 
neighboring 2’s.
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e

Tilting a decorated square lattice

No more 3’s are possible, but 
some 2’s are left over
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e

Tilting a decorated square lattice

Start again
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e

Tilting a decorated square lattice

Another maximal set of 2’s
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e

Tilting a decorated square lattice

Maximum number of 3’s with 
no 2’s left over
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e

Tilting a decorated square lattice

Configurations map onto dimer 
coverings of the square lattice !

Susanne
Pielawa
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Go backwards around a plaquette
Thursday, March 10, 2011



e

Tilting a decorated square lattice

Go backwards around a plaquette
Thursday, March 10, 2011



e

Tilting a decorated square lattice

Go backwards around a plaquette
Thursday, March 10, 2011



e

Tilting a decorated square lattice

Go backwards around a plaquette
Thursday, March 10, 2011



e

Tilting a decorated square lattice

Then create a different set of 3’s
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e

Tilting a decorated square lattice

A different dimer covering
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e

Tilting a decorated square lattice

Susanne
Pielawa

Dimers can resonate around a plaquette

Thursday, March 10, 2011



e

Tilting a decorated square lattice

Dimers can resonate around a plaquette

Susanne
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e

Tilting a decorated square lattice

Susanne
Pielawa

Strong tilt: 
effective quantum dimer model 
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 Many common issues on many body quantum 
correlations in condensed matter and ultracold atoms

 Tilting Mott insulators can generate many interesting 
states with interesting quantum entanglement

Conclusions
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