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FIG. 1: Zero temperature (T = 0), zero field (B = 0) phase diagram in the vicinity of the

quantum critical point described by the CFT, represented by the filled circle. The coupling g

represents a parameter which tunes between a superfluid and a Mott insulator which is at a

density commensurate with the underlying lattice. The chemical potential µ introduces variations

in the density and ρ is difference in the density of pairs of holes in the superfluid from that in the

Mott insulator. The thin dashed lines are contours of constant ρ. In the application to the cuprate

superconductors, the Mott insulator with ρ = 0 could be, e.g., an insulating state at hole density

δI = 1/8 in a generalized phase diagram; then ρ = (δ − δI)/(2a2), where a is the lattice spacing.

The thick dotted line represents a possible trajectory of a particular compound as its hole density

is decreased; note that the ground state is always a superconductor along this trajectory, even at

δ = 1/8 (although there will be a dip in Tc near δ = 1/8 as is also clear from Fig. 2). Note that the

parent Mott insulator with zero hole density is not shown above. This paper will describe electrical

and thermal transport in the above phase diagram perturbed by an applied magnetic field B and

a small density of impurities.

The discussion so far applies, strictly speaking, only to systems which are exactly at the

commensurate density for which a gapped Mott insulator can form. The cuprates, and other

experimental systems, are not generically at these special densities, and so it is crucial to

develop a theory that is applicable at generic densities. Such a theory will emerge as a

special case of our more general results below. We allow the density to take values ρ by

applying a chemical potential µ, as shown in Figs. 1 and 2.

We emphasize that ρ measures the deviation in particle number density from the density

of the commensurate insulator [19, 20]; so ρ can be positive or negative, and we will see
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• Fermi surface separates empty

and occupied states in mo-

mentum space.

• Area enclosed by Fermi sur-

face = Q. Momenta of low

energy excitations fixed by

density of all electrons.

• Long-lived electron-like quasi-

particle excitations near the

Fermi surface: lifetime of quasi-

particles ⇠ 1/T 2
.

Ordinary metals: the Fermi liquid

• (Thermal conductivity)

T (Electrical conductivity)

=

⇡2k2B
3e2

⌘ L0
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Wiedemann-Franz Law

I Wiedemann-Franz law in a Fermi liquid:



�T
⇡ ⇡2k2

B

3e2
⇡ 2.45 ⇥ 10�8 W · ⌦

K2
.

I in hydrodynamics one finds



�T
=

Lhydro

(1 + (Q/Q0)2)
2 , Lhydro � 1.

hence the Lorenz ratio, L, departs from the Sommer- 
feld value, L o 

L -  efT (4) 

The important scattering processes in thermal and 
electrical conduction are: (i) elastic scattering by solute 
atoms, impurities and lattice defects, (ii) scattering of 
the electrons by phonons, and (iii) electron-electron 
interactions. In the elastic scattering region, i.e. at very 
low temperature, IE = IT and hence L = L 0. At higher 
temperatures, electron-electron scattering and elec- 
tron-phonon scattering dominate and the collisions 
are inelastic. Then IE#l T and hence L deviates 
from L o. 

Deviations from the Sommerfeld value of the 
Lorenz number are due to various reasons. In metals, 
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at low temperatures the deviations are due to the 
inelastic nature of electron-phonon interactions. In 
some cases, a higher Lorenz number is due to the 
presence of impurities. The phonon contribution to 
thermal conductivity sometimes increases the Lorenz 
number, and this contribution, when phonon 
Umklapp scattering is present, is inversely propor- 
tional to the temperature. The deviations in Lorenz 
number can also be due to the changes in band 
structure. In magnetic materials, the presence of mag- 
nons also can change the Lorenz number at low 
temperatures. In the presence of a magnetic field, the 
Lorenz number varies directly with magnetic field. 
Changes in Lorenz number are sometimes due to 
structural phase transitions. In recent years, the 
Lorenz number has also been investigated at higher 
temperatures and has been found to deviate from the 
Sommerfeld value [14-20] and it is sometimes at- 
tributed to the incomplete degeneracy (Fermi 
smearing) [21] of electron gas. The Lorenz number 
has also been found to vary with pressure [-22, 23]. 

In alloys, the thermal conductivity and hence the 
Lorenz number have contributions from the electronic 
and lattice parts at low temperatures. The apparent 
Lorenz ratio (L/Lo) for many alloys has a peak at low 
temperatures. At higher temperatures the apparent 
Lorenz ratio is constant for each sample and ap- 
proaches Lo as the percentage of alloying, x, increases. 
In certain alloys at high temperatures, the ordering 
causes a peak in L/L  o. 

The Lorenz number of degenerate semiconductors 
also shows a similar deviation to that observed in 
metals and alloys. Up to a certain temperature, in- 
elastic scattering determines the Lorenz number value, 
and below this the scattering is elastic which is due to 
impurities. Supression of the electronic contribution 
to thermal conductivity and hence the separation of 
the lattice and electronic parts of conductivity can be 
done by application of a transverse magnetic field and 
hence the Lorenz number can be evaluated. The devi- 
ation of the Lorenz number in some degenerate semi- 
conductors is attributed to phonon drag. In some 
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Figure 2 Experimental Lorenz number  of elemental metals in the low-temperature residual resistance regime, see Table I. Also shown are our 
own data points on a doped, degenerate semiconductor (Table III). Data are plotted versus electrical conductivity and also versus carrier 
concentration, taken from Ashcroft and Mermin [24] except for the semiconductors. 
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Key properties of a strange metal

• No quasiparticle excitations

• Shortest possible “collision time”, or

more precisely, fastest possible local

equilibration time ⇠ ~
kBT

• Continuously variable density, Q
(conformal field theories are usually

at fixed density, Q = 0)
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Wiedemann-Franz Law Violations in Experiment
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T (Electrical conductivity)

; L0 ⌘ ⇡2k2B
3e2
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Quasiparticle transport in metals:

• Focus on infinite number of (near) conserva-

tion laws (momenta of quasiparticles on the

Fermi surface) and compute how they are

slowly violated by the lattice or impurities



Transport in strange metals

• There are no quasiparticles, and so the Fermi

surface is not a central actor in transport

(although a Fermi surface can be precisely

defined in some cases).

• Focus on relaxation of total momentum (in-

cluding contributions of the Fermi surface (if

present) and all critical bosons) by the lat-

tice or impurities
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Summary

hydrodynamics

memory matrix holography

universal constraints on transport

appropriate microscopics 
for cuprates

few conserved quantities

perturbative  
limit

long time dynamics; 
“renormalized IR fluid”  

emerges

matrix large N theory; 
non-perturbative computations

[Lucas JHEP]

[Lucas 1506]
[Donos, Gauntlett 1506]

[Lucas, Sachdev PRB]

[Forster ’70s]

[Hartnoll, others]

figure from [Lucas, Sachdev, Physical Review B91 195122 (2015)]

Transport in Strange Metals 

S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, PRB 76, 144502 (2007)

Dynamics of charged
black hole horizons



Prediction for transport in the graphene strange metal 

S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, PRB 76, 144502 (2007)
M. Müller and S. Sachdev, PRB 78, 115419 (2008)

Recall that in a Fermi liquid, the Lorenz ratio L = /(T�), where
 is the thermal conductivity, and � is the conductivity, is given by
L = ⇡2k2B/(3e

2).
For a strange metal with a “relativistic” Hamiltonian, hydrody-

namic, holographic, and memory function methods yield

� = �Q

✓
1 +

e2v2FQ2⌧imp

H�Q

◆
,  =

v2FH⌧imp

T

✓
1 +

e2v2FQ2⌧imp

H�Q

◆�1

L =
v2FH⌧imp

T 2�Q

✓
1 +

e2v2FQ2⌧imp

H�Q

◆�2

,

where H is the enthalpy density, ⌧imp is the momentum relaxation time
(from impurities), while � = �Q, an intrinsic, finite, “quantum criti-
cal” conductivity. Note that the limits Q ! 0 and ⌧imp ! 1 do not
commute.
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FIG. 1. Temperature and density dependent electrical and thermal conductivity. (A) Resistance versus gate voltage
at various temperatures. (B) Electrical conductivity (blue) as a function of the charge density set by the back gate for di↵erent
bath temperatures. The residual carrier density at the neutrality point (green) is estimated by the intersection of the minimum
conductivity with a linear fit to log(�) away from neutrality (dashed grey lines). Curves have been o↵set vertically such that
the minimum density (green) aligns with the temperature axis to the right. Solid black lines correspond to 4e2/h. At low
temperature, the minimum density is limited by disorder (charge puddles). However, above Tdis ⇠ 40 K, a crossover marked
in the half-tone background, thermal excitations begin to dominate and the sample enters the non-degenerate regime near
the neutrality point. (C-D) Thermal conductivity (red points) as a function of (C) gate voltage and (D) bath temperature
compared to the Wiedemann-Franz law, �TL0 (blue lines). At low temperature and/or high doping (|µ| � kBT ), we find the
WF law to hold. This is a non-trivial check on the quality of our measurement. In the non-degenerate regime (|µ| < kBT )
the thermal conductivity is enhanced and the WF law is violated. Above Tel�ph ⇠ 80 K, electron-phonon coupling becomes
appreciable and begins to dominate thermal transport at all measured gate voltages. All data from this figure is taken from
sample S2 (inset 1E).

Realization of the Dirac fluid in graphene requires that
the thermal energy be larger than the local chemical po-
tential µ(r), defined at position r: kBT & |µ(r)|. Impu-
rities cause spatial variations in the local chemical po-
tential, and even when the sample is globally neutral, it
is locally doped to form electron-hole puddles with finite
µ(r) [25–28]. Formation of the DF is further complicated
by phonon scattering at high temperature which can re-
lax momentum by creating additional inelastic scattering
channels. This high temperature limit occurs when the
electron-phonon scattering rate becomes comparable to
the electron-electron scattering rate. These two temper-
atures set the experimental window in which the DF and
the breakdown of the WF law can be observed.

To minimize disorder, the monolayer graphene samples
used in this report are encapsulated in hexagonal boron
nitride (hBN) [29]. All devices used in this study are
two-terminal to keep a well-defined temperature profile

[30] with contacts fabricated using the one-dimensional
edge technique [31] in order to minimize contact resis-
tance. We employ a back gate voltage Vg applied to
the silicon substrate to tune the charge carrier density
n = ne � nh, where ne and nh are the electron and hole
density, respectively (see supplementary materials (SM)).
All measurements are performed in a cryostat controlling
the temperature Tbath. Fig. 1A shows the resistance R
versus Vg measured at various fixed temperatures for a
representative device (see SM for all samples). From this,
we estimate the electrical conductivity � (Fig. 1B) using
the known sample dimensions. At the CNP, the residual
charge carrier density nmin can be estimated by extrap-
olating a linear fit of log(�) as a function of log(n) out
to the minimum conductivity [32]. At the lowest tem-
peratures we find nmin saturates to ⇠8⇥109 cm�2. We
note that the extraction of nmin by this method overesti-
mates the charge puddle energy, consistent with previous
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FIG. 3. Disorder in the Dirac fluid. (A) Minimum car-
rier density as a function of temperature for all three sam-
ples. At low temperature each sample is limited by disorder.
At high temperature all samples become limited by thermal
excitations. Dashed lines are a guide to the eye. (B) The
Lorentz ratio of all three samples as a function of bath tem-
perature. The largest WF violation is seen in the cleanest
sample. (C) The gate dependence of the Lorentz ratio is well
fit to hydrodynamic theory of Ref. [5, 6]. Fits of all three
samples are shown at 60 K. All samples return to the Fermi
liquid value (black dashed line) at high density. Inset shows
the fitted enthalpy density as a function of temperature and
the theoretical value in clean graphene (black dashed line).
Schematic inset illustrates the di↵erence between heat and
charge current in the neutral Dirac plasma.

more pronounced peak but also a narrower density de-
pendence, as predicted [5, 6].

More quantitative analysis of L(n) in our experiment
can be done by employing a quasi-relativistic hydrody-
namic theory of the DF incorporating the e↵ects of weak
impurity scattering [5, 6, 39].

L =
LDF

(1 + (n/n0)2)
2 (2)

where

LDF =
HvFlm
T 2�min

and n2
0 =

H�min

e2vFlm
. (3)

Here vF is the Fermi velocity in graphene, �min is the elec-
trical conductivity at the CNP, H is the fluid enthalpy
density, and lm is the momentum relaxation length from

impurities. Two parameters in Eqn. 2 are undetermined
for any given sample: lm and H. For simplicity, we as-
sume we are well within the DF limit where lm and H
are approximately independent of n. We fit the experi-
mentally measured L(n) to Eqn. (2) for all temperatures
and densities in the Dirac fluid regime to obtain lm and
H for each sample. Fig 3C shows three representative fits
to Eqn. (2) taken at 60 K. lm is estimated to be 1.5, 0.6,
and 0.034 µm for samples S1, S2, and S3, respectively.
For the system to be well described by hydrodynamics,
lm should be long compared to the electron-electron scat-
tering length of ⇠0.1 µm expected for the Dirac fluid at
60 K [18]. This is consistent with the pronounced sig-
natures of hydrodynamics in S1 and S2, but not in S3,
where only a glimpse of the DF appears in this more
disordered sample. Our analysis also allows us to es-
timate the thermodynamic quantity H(T ) for the DF.
The Fig. 3C inset shows the fitted enthalpy density as
a function of temperature compared to that expected in
clean graphene (dashed line) [18], excluding renormal-
ization of the Fermi velocity. In the cleanest sample H
varies from 1.1-2.3 eV/µm2 for Tdis < T < Tel�ph. This
enthalpy density corresponds to ⇠ 20 meV or ⇠ 4kBT
per charge carrier — about a factor of 2 larger than the
model calculation without disorder [18].

In a hydrodynamic system, the ratio of shear viscosity
⌘ to entropy density s is an indicator of the strength of
the interactions between constituent particles. It is sug-
gested that the DF can behave as a nearly perfect fluid
[18]: ⌘/s approaches a “universal” lower bound conjec-
ture by Kovtun-Son-Starinets, (⌘/s)/(~/kB) � 1/4⇡ for
a strongly interacting system [40]. Though we cannot
directly measure ⌘, we comment on the implications of
our measurement for its value. Within relativistic hy-
drodynamics, we can estimate the shear viscosity of the
electron-hole plasma in graphene from the enthalpy den-
sity as ⌘ ⇠ H⌧ee [40], where ⌧ee is the electron-electron
scattering time. Increasing the strength of interactions
decreases ⌧ee, which in turn decreases ⌘ and ⌘/s. Employ-
ing the expected Heisenberg limited inter-particle scat-
tering time, ⌧ee ⇠ ~/kBT [5, 6], we find a shear viscosity
of ⇠ 10�20 kg/s in two-dimensional units, corresponding
to ⇠ 10�10 Pa · s. The value of ⌧ee used here is consistent
with recent optical experiments on graphene [14, 16, 17].
Using the theoretical entropy density for clean graphene
(SM), we estimate (⌘/s)/(~/kB) ⇠ 3. This is comparable
to ⇠0.7 found in liquid helium at the Lambda-point [41],
⇠0.3 measured in cold atoms [3], and  0.4 for quark-
gluon plasmas [4].

To fully incorporate the e↵ects of disorder, a hydrody-
namic theory treating inhomogeneity non-perturbatively
may be needed [42]. The enthalpy densities reported here
are larger than the theoretical estimation obtained for
disorder free graphene; consistent with the picture that
chemical potential fluctuations prevent the sample from
reaching the Dirac point. While we find thermal conduc-

Lorentz ratio L = /(T�)

=

v2FH⌧imp

T 2�Q

1

(1 + e2v2FQ2⌧imp/(H�Q))
2
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Relativistic hydrodynamics
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Relativistic Hydrodynamics

I hydrodynamics when l � lee, t � tee

I long time dynamics governed by conservation laws:
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I quantum physics ! values of P , �q, etc...

[Hartnoll, Kovtun, Müller, Sachdev, Physical Review B76 144502 (2007)]

New (and only) transport co-e�cient, �Q:

“quantum critical” conductivity at Q = 0.

Qi = T ti � µJ i



Translational symmetry breaking

Momentum relaxation by an external source h coupling to the operator O

H = H0 �
Z

ddxh(x)O(x).

M
⌧

= lim

!!0

Z
ddq |h(q)|2q2x

Im

�
GR

OO(q,!)
�
H0

!
+ higher orders in h

Leads to an additional term in equations of motion:

@µT
µi

= . . .� T it

⌧imp
+ . . .
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Translational symmetry breaking

Momentum relaxation by an external source h coupling to the operator O
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= lim
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Im
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GR
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+ higher orders in h

Leads to an additional term in equations of motion:
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“Memory function” methods yield an explicit expression for ⌧imp:
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AdS/CFT correspondence at zero temperature
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AdS/CFT correspondence at non-zero temperature
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Charged black branes

Einstein-Maxwell theory SEM =
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AdS-Reissner-Nordstrom Quantummatter on

the boundary with

a variable charge

densityQ of a global

U(1) symmetry.

A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, 99

Realizes a strange metal: a state with an unbroken global U(1)

symmetry with a continuously variable charge density, Q, at

T = 0 which does not have any quasiparticle excitations.
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More general theories have “hyperscaling violating metric”

at T=0

C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, JHEP 1011, 151 (2010).
N. Iizuka, N. Kundu, P. Narayan and S. P. Trivedi, JHEP 1201, 94 (2012).
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Inhomogeneous charged black branes

+

++

+
Electric flux

hQi
6= 0

r

+

Add a source term,Z
d

d
xh(x)O(x)

+

Weakly disordered charged black branes yield results identical to 
those obtained from memory functions and holography

• G.T. Horowitz, J.E. Santos, and D. Tong, JHEP 1207, 168 (2012), JHEP 1211, 102 (2012).
• D. Vegh, arXiv:1301.0537. • M. Blake, D. Tong, and D. Vegh, PRL 112, 071602 (2013).
•M. Blake and D. Tong, PRD 88, 106004 (2013). •A. Lucas, S. Sachdev, and K. Schalm, PRD
89, 066018 (2014). • A. Lucas, JHEP 1503, 071 (2015). • R. A. Davison and B. Goutéraux,
arXiv:1505.05092; arXiv:1507.07137. • M. Blake, arXiv:1505.06992; arXiv:1507.04870.



Prediction for transport in the graphene strange metal 

S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, PRB 76, 144502 (2007)
M. Müller and S. Sachdev, PRB 78, 115419 (2008)

Recall that in a Fermi liquid, the Lorenz ratio L = /(T�), where
 is the thermal conductivity, and � is the conductivity, is given by
L = ⇡2k2B/(3e

2).
For a strange metal with a “relativistic” Hamiltonian, hydrody-

namic, holographic, and memory function methods yield

� = �Q

✓
1 +

e2v2FQ2⌧imp

H�Q

◆
,  =

v2FH⌧imp

T

✓
1 +

e2v2FQ2⌧imp

H�Q

◆�1

L =
v2FH⌧imp

T 2�Q

✓
1 +

e2v2FQ2⌧imp

H�Q

◆�2

,

where H is the enthalpy density, ⌧imp is the momentum relaxation time
(from impurities), while � = �Q, an intrinsic, finite, “quantum criti-
cal” conductivity. Note that the limits Q ! 0 and ⌧imp ! 1 do not
commute.



hole FL elec. FLDirac fluid

�400 �200 0 200 400
0

0.5

1

1.5

2

n (µm�2)

�
(k

⌦
�

1

)

hole FL elec. FLDirac fluid

�400 �200 0 200 400
0

2

4

6

8

10

n (µm�2)


(n

W
/
K

)

Figure 1: testingFigure 1: A comparison of our hydrodynamic theory of transport with the experimental results of
[33] in clean samples of graphene at T = 75 K. We study the electrical and thermal conductances
at various charge densities n near the charge neutrality point. Experimental data is shown
as circular red data markers, and numerical results of our theory, averaged over 30 disorder
realizations, are shown as the solid blue line. Our theory assumes the equations of state described
in (27) with the parameters C

0

⇡ 11, C

2

⇡ 9, C

4

⇡ 200, ⌘

0

⇡ 110, �

0

⇡ 1.7, and (28) with
u

0

⇡ 0.13. The yellow shaded region shows where Fermi liquid behavior is observed and the
Wiedemann-Franz law is restored, and our hydrodynamic theory is not valid in or near this
regime. We also show the predictions of (2) as dashed purple lines, and have chosen the 3
parameter fit to be optimized for (n).

where e is the electron charge, s is the entropy density, n is the charge density (in units of length�2),
H is the enthalpy density, ⌧ is a momentum relaxation time, and �q is a quantum critical e↵ect, whose
existence is a new e↵ect in the hydrodynamic gradient expansion of a relativistic fluid. Note that up to
�q, �(n) is simply described by Drude physics. The Lorenz ratio then takes the general form
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L
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L(n) can be parametrically larger than L
WF

(as ⌧ ! 1 and n ⌧ n

0

), and much smaller (n � n

0

).
Both of these predictions were observed in the recent experiment, and fits of the measured L to (3) were
quantitatively consistent, until large enough n where Fermi liquid behavior was restored. However, the
experiment also found that the conductivity did not grow rapidly away from n = 0 as predicted in (2),
despite a large peak in (n) near n = 0, as we show in Figure 1. Furthermore, the theory of [25] does not
make clear predictions for the temperature dependence of ⌧ , which determines (T ).

In this paper, we argue that there are two related reasons for the breakdown of (2). One is that the
dominant source of disorder in graphene – fluctuations in the local charge density, commonly referred to as
charge puddles [43, 44, 45, 46] – are not perturbatively weak, and therefore a non-perturbative treatment
of their e↵ects is necessary.3 The second is that the parameter ⌧ , even when it is sharply defined, is

3See [47, 48] for a theory of electrical conductivity in charge puddle dominated graphene at low temperatures.
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Q Q

Comparison to theory with a single momentum relaxation time ⌧imp.

Best fit of density dependence to thermal conductivity does not capture

the density dependence of electrical conductivity
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Figure 3: A cartoon of a nearly quantum critical fluid where our hydrodynamic description of
transport is sensible. The local chemical potential µ(x) always obeys |µ| ⌧ k

B

T , and so the
entropy density s/k

B

is much larger than the charge density |n|; both electrons and holes are
everywhere excited, and the energy density ✏ does not fluctuate as much relative to the mean.
Near charge neutrality the local charge density flips sign repeatedly. The correlation length of
disorder ⇠ is much larger than l

ee

, the electron-electron interaction length.

1.2 Outline

The outline of this paper is as follows. We briefly review the definitions of transport coe�cients in Section
2. In Section 3 we develop a theory of hydrodynamic transport in the electron fluid, assuming that it is
Lorentz invariant. We discuss the peculiar case of the Dirac fluid in graphene in Section 4, and argue that
deviations from Lorentz invariance are small. We describe the results of our numerical simulations of this
theory in Section 5, and directly compare our simulations with recent experimental data from graphene
[33]. The experimentally relevant e↵ects of phonons are qualitatively described in Section 6. We conclude
the paper with a discussion of future experimental directions. Appendices contain technical details of our
theory.

In this paper we use index notation for vectors and tensors. Latin indices ij · · · run over spatial
coordinates x and y; Greek indices µ⌫ · · · run over time t as well. We will denote the time-like coordinate
of A

µ as A

t. Indices are raised and lowered with the Minkowski metric ⌘

µ⌫ ⌘ diag(�1, 1, 1). The Einstein
summation convention is always employed.

Transport Coe�cients2

Let us begin by defining the thermoelectric response coe�cients of interest in this paper. Suppose that
we drive our fluid by a spatially uniform, externally applied, electric field E
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(formally, an electrochemical
potential gradient), and a temperature gradient �@
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T . We will refer to �@

j

T as T ⇣
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�1
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T ,
for technical reasons later. As is standard in linear response theory, we decompose these perturbations
into various frequencies, and focus on the response at a single frequency !. Time translation invariance
implies that the (uniformly) spatially averaged charge current hJ

i

i and the spatially averaged heat current
hQ

i

i are also periodic in time of frequency !, and are related to E
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i

by the thermoelectric transport
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6

Non-perturbative treatment of disorder

Note

n ⌘ Q

Numerically solve the hydrodynamic equations in the presence of a

x-dependent chemical potential. The thermoelectric transport properties

will then depend upon the value of the shear viscosity, ⌘.

A. Lucas, J. Crossno, K.C. Fong, P. Kim, and S. Sachdev,  arXiv:1510.01738, PRB to appear
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Figure 1: testingFigure 1: A comparison of our hydrodynamic theory of transport with the experimental results of
[33] in clean samples of graphene at T = 75 K. We study the electrical and thermal conductances
at various charge densities n near the charge neutrality point. Experimental data is shown
as circular red data markers, and numerical results of our theory, averaged over 30 disorder
realizations, are shown as the solid blue line. Our theory assumes the equations of state described
in (27) with the parameters C
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⇡ 0.13. The yellow shaded region shows where Fermi liquid behavior is observed and the
Wiedemann-Franz law is restored, and our hydrodynamic theory is not valid in or near this
regime. We also show the predictions of (2) as dashed purple lines, and have chosen the 3
parameter fit to be optimized for (n).

where e is the electron charge, s is the entropy density, n is the charge density (in units of length�2),
H is the enthalpy density, ⌧ is a momentum relaxation time, and �q is a quantum critical e↵ect, whose
existence is a new e↵ect in the hydrodynamic gradient expansion of a relativistic fluid. Note that up to
�q, �(n) is simply described by Drude physics. The Lorenz ratio then takes the general form
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Both of these predictions were observed in the recent experiment, and fits of the measured L to (3) were
quantitatively consistent, until large enough n where Fermi liquid behavior was restored. However, the
experiment also found that the conductivity did not grow rapidly away from n = 0 as predicted in (2),
despite a large peak in (n) near n = 0, as we show in Figure 1. Furthermore, the theory of [25] does not
make clear predictions for the temperature dependence of ⌧ , which determines (T ).

In this paper, we argue that there are two related reasons for the breakdown of (2). One is that the
dominant source of disorder in graphene – fluctuations in the local charge density, commonly referred to as
charge puddles [43, 44, 45, 46] – are not perturbatively weak, and therefore a non-perturbative treatment
of their e↵ects is necessary.3 The second is that the parameter ⌧ , even when it is sharply defined, is

3See [47, 48] for a theory of electrical conductivity in charge puddle dominated graphene at low temperatures.
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Solution of the hydrodynamic equations in the presence

of a space-dependent chemical potential.

Best fit of density dependence to thermal conductivity now gives a better fit to

the density dependence of the electrical conductivity (for ⌘/s ⇡ 10). The T
dependencies of other parameters also agree well with expectation.

A. Lucas, J. Crossno, K.C. Fong, P. Kim, and S. Sachdev,  arXiv:1510.01738, PRB to appear



Quantum matter without quasiparticles

• No quasiparticle excitations

• Shortest possible “collision time”, or more precisely, fastest

possible local equilibration time ⇠ ~
kBT

• Continuously variable density, Q
(conformal field theories are usually at fixed density, Q = 0)

• Theory built from hydrodynamics/holography

/memory-functions/strong-coupled-field-theory

• Exciting experimental realization in graphene.


