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Examine ground state as a function of λ

S=1/2
spins
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At large    ground state is a “quantum paramagnet” with 
spins locked in valence bond singlets
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Square lattice antiferromagnet

Nearest-neighor spins are “entangled” with each other.
Can be separated into an Einstein-Podolsky-Rosen (EPR) pair.
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Square lattice antiferromagnet

H =
�

�ij�

Jij
�Si · �Sj

J

J/λ

For λ ≈ 1, the ground state has antiferromagnetic (“Néel”) order,
and the spins align in a checkerboard pattern
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Square lattice antiferromagnet

H =
�

�ij�

Jij
�Si · �Sj

J

J/λ

For λ ≈ 1, the ground state has antiferromagnetic (“Néel”) order,
and the spins align in a checkerboard pattern

No EPR pairs
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Pressure in TlCuCl3
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A. Oosawa, K. Kakurai, T. Osakabe, M. Nakamura, M. Takeda, and H. Tanaka, 
Journal of the Physical Society of Japan, 73,  1446 (2004).
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TlCuCl3

An insulator whose spin susceptibility vanishes 
exponentially as the temperature T tends to zero.
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TlCuCl3

Quantum paramagnet at 
ambient pressure
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TlCuCl3

Neel order under pressure
A. Oosawa, K. Kakurai, T. Osakabe, M. Nakamura, M. Takeda, and H. Tanaka, 
Journal of the Physical Society of Japan, 73,  1446 (2004).
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Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, 
Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, 

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)

Excitations of TlCuCl3 with varying pressure
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Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, 
Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, 

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)
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Excitations of TlCuCl3 with varying pressure

Broken valence bond
excitations of the

quantum paramagnet
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Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, 
Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, 

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)
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Excitations of TlCuCl3 with varying pressure

Spin wave

and longitudinal excitations

(similar to the Higgs particle)

of the Néel state.
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λλc

Quantum critical point with non-local 
entanglement in spin wavefunction
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depth of
entanglement

D-dimensional
space

Tensor network representation of entanglement
  at quantum critical point
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• Long-range entanglement

• Long distance and low energy correlations near the
quantum critical point are described by a quantum
field theory which is relativistically invariant (where
the spin-wave velocity plays the role of the velocity
of “light”).

• The quantum field theory is invariant under scale and
conformal transformations at the quantum critical
point: a CFT3

Characteristics of 
  quantum critical point
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• Allows unification of the standard model of particle
physics with gravity.

• Low-lying string modes correspond to gauge fields,
gravitons, quarks . . .

String theory
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• A D-brane is a D-dimensional surface on which strings can end.

• The low-energy theory on a D-brane is an ordinary quantum
field theory with no gravity.

• In D = 2, we obtain strongly-interacting CFT3s. These are
“dual” to string theory on anti-de Sitter space: AdS4.

Tuesday, October 4, 2011



• A D-brane is a D-dimensional surface on which strings can end.

• The low-energy theory on a D-brane is an ordinary quantum
field theory with no gravity.

• In D = 2, we obtain strongly-interacting CFT3s. These are
“dual” to string theory on anti-de Sitter space: AdS4.

CFTD+1
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depth of
entanglement

D-dimensional
space

Tensor network representation of entanglement
  at quantum critical point
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String theory near 
a D-brane

depth of
entanglement

D-dimensional
space

Emergent direction
of AdS4 Brian Swingle, arXiv:0905.1317
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depth of
entanglement

D-dimensional
space

Entanglement entropy

A
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depth of
entanglement

D-dimensional
space

Entanglement entropy

A

Draw a surface which intersects the minimal number of links
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The entanglement entropy of a region A on the boundary 
equals the minimal area of a surface in the higher-dimensional 

space whose boundary co-incides with that of A.

This can be seen both the string and tensor-network pictures

Entanglement entropy

Swingle, Ryu, Takayanagi
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Field theories in D + 1 spacetime dimensions are

characterized by couplings g which obey the renor-

malization group equation

u
dg

du
= β(g)

where u is the energy scale. The RG equation is

local in energy scale, i.e. the RHS does not depend

upon u.
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u
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u
Key idea: ⇒ Implement u as an extra dimen-
sion, and map to a local theory in D + 2 spacetime
dimensions.
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At the RG fixed point, β(g) = 0, the D + 1 di-
mensional field theory is invariant under the scale
transformation

xµ → xµ/b , u → b u
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At the RG fixed point, β(g) = 0, the D + 1 di-
mensional field theory is invariant under the scale
transformation

xµ → xµ/b , u → b u

This is an invariance of the metric of the theory in

D + 2 dimensions. The unique solution is

ds2 =

� u

L

�2
dxµdxµ + L2 du

2

u2
.

Or, using the length scale z = L2/u

ds2 = L2 dx
µdxµ + dz2

z2
.

This is the space AdSD+2, and L is the AdS radius.
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u
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z

J. McGreevy, arXiv0909.0518
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z

AdSD+2
RD,1

Minkowski

CFTD+1

J. McGreevy, arXiv0909.0518
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M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Ultracold 87Rb
atoms - bosons

Superfluid-insulator transition
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Excitations of the insulator:
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Excitations of the insulator:

M.P. A. Fisher,  P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
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InsulatorSuperfluid

Quantum
critical

TKT
�ψ� �= 0 �ψ� = 0
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InsulatorSuperfluid

Quantum
critical

TKT

CFT3

�ψ� �= 0 �ψ� = 0
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g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT

CFT3 at T>0
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Quantum critical transport 

S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

Quantum “nearly perfect fluid”
with shortest possible
equilibration time, τeq

τeq = C �
kBT

where C is a universal constant
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Quantum critical transport 

M.P.A. Fisher, G. Grinstein, and S.M. Girvin, Phys. Rev. Lett. 64, 587 (1990)                                                             
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

σ =
Q2

h
× [Universal constant O(1) ]

(Q is the “charge” of one boson)

Transport co-oefficients not determined
by collision rate, but by

universal constants of nature

Conductivity
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Describe charge transport using Boltzmann theory of in-
teracting bosons:

dv

dt
+

v

τc
= F.

This gives a frequency (ω) dependent conductivity

σ(ω) =
σ0

1− iω τc

where τc ∼ �/(kBT ) is the time between boson collisions.

Also, we have σ(ω → ∞) = σ∞, associated with the den-
sity of states for particle-hole creation (the “optical con-
ductivity”) in the CFT3.

Quantum critical transport 
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Quantum critical transport 

Describe charge transport using Boltzmann theory of in-
teracting bosons:

dv

dt
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v

τc
= F.

This gives a frequency (ω) dependent conductivity

σ(ω) =
σ0

1− iω τc

where τc ∼ �/(kBT ) is the time between boson collisions.
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Boltzmann theory of bosons

σ0

σ∞

ω

1/τc

Re[σ(ω)]
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g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT
�ψ� �= 0 �ψ� = 0

So far, we have described the quantum critical point using
the boson particle and hole excitations of the insulator.
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However, we could equally well describe the conductivity

using the excitations of the superfluid, which are vortices.

These are quantum particles (in 2+1 dimensions) which

described by a (mirror/e.m.) “dual” CFT3 with an emer-

gent U(1) gauge field. Their T > 0 dynamics can also be

described by a Boltzmann equation:

Conductivity = Resistivity of vortices

g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT
�ψ� �= 0 �ψ� = 0
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g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT
�ψ� �= 0 �ψ� = 0

However, we could equally well describe the conductivity

using the excitations of the superfluid, which are vortices.

These are quantum particles (in 2+1 dimensions) which

described by a (mirror/e.m.) “dual” CFT3 with an emer-

gent U(1) gauge field. Their T > 0 dynamics can also be

described by a Boltzmann equation:

Conductivity = Resistivity of vortices

M.P.A. Fisher, Physical Review Letters 65, 923 (1990)
Tuesday, October 4, 2011



Boltzmann theory of bosons

σ0

σ∞

ω

1/τc

Re[σ(ω)]
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Boltzmann theory of vortices

σ∞1/τcv

1/σ0v

Re[σ(ω)]

ω
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Boltzmann theory of bosons

σ0

σ∞

ω

1/τc

Re[σ(ω)]
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AdS/CFT correspondence at non-zero temperatures

Answers from string theory
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AdS4-Schwarzschild black-brane

S =

�
d4x

√
−g

�
1

2κ2

�
R+

6

L2

��

AdS/CFT correspondence at non-zero temperatures
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A 2+1 
dimensional 
system at its 

quantum 
critical point
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AdS4-Schwarzschild black-brane

AdS/CFT correspondence at non-zero temperatures
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A 2+1 
dimensional 
system at its 

quantum 
critical point

Black-brane at 
temperature of 

2+1 dimensional 
quantum critical 

system
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AdS4-Schwarzschild black-brane

AdS/CFT correspondence at non-zero temperatures
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A 2+1 
dimensional 
system at its 

quantum 
critical point

Black-brane at 
temperature of 

2+1 dimensional 
quantum critical 

system

Friction of quantum 
criticality = waves 

falling into black brane 

AdS4-Schwarzschild black-brane

AdS/CFT correspondence at non-zero temperatures
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AdS4 theory of “nearly perfect fluids”

C. P. Herzog, P. K. Kovtun, S. Sachdev, and D. T. Son,

Phys. Rev. D 75, 085020 (2007).

To leading order in a gradient expansion, charge transport in
an infinite set of strongly-interacting CFT3s can be described by
Einstein-Maxwell gravity/electrodynamics on AdS4-Schwarzschild

SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab

�
.
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Einstein-Maxwell gravity/electrodynamics on AdS4-Schwarzschild

SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab

�
.

AdS4 theory of “nearly perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

We include all possible 4-derivative terms: after suitable field
redefinitions, the required theory has only one dimensionless
constant γ (L is the radius of AdS4):

SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab +
γL2

e2
CabcdF

abF cd

�
,

where Cabcd is the Weyl curvature tensor.
Stability and causality constraints restrict |γ| < 1/12.
The value of γ can be fixed by matching to a direct computation
in the CFT3 at T = 0.
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AdS4 theory of strongly interacting “perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

0.0 0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

ω

4πT

γ = 0

γ =
1

12

γ = − 1

12

Re[σ(ω)]

σ∞

Tuesday, October 4, 2011



0.0 0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

ω

4πT

γ = 0

γ =
1

12

γ = − 1
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AdS4 theory of strongly interacting “perfect fluids”

• The γ > 0 result has similarities to
the quantum-Boltzmann result for
transport of particle-like excitations

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

Re[σ(ω)]

σ∞
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AdS4 theory of strongly interacting “perfect fluids”

• The γ < 0 result can be interpreted
as the transport of vortex-like
excitations

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

Re[σ(ω)]

σ∞
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γ = − 1

12

AdS4 theory of strongly interacting “perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

• The γ = 0 case is the exact result for the large N limit
of SU(N) gauge theory with N = 8 supersymmetry (the
ABJM model). The ω-independence is a consequence of
self-duality under particle-vortex duality (S-duality).

Re[σ(ω)]

σ∞
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AdS4 theory of strongly interacting “perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

• Stability constraints on the effective
theory (|γ| < 1/12) allow only a lim-
ited ω-dependence in the conductivity

Re[σ(ω)]

σ∞
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Ishida, Nakai, and Hosono
arXiv:0906.2045v1
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S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler, N. Ni, 
S. L. Bud'ko, P. C. Canfield, J. Schmalian,  R. J. McQueeney, A. I. Goldman, 

Physical Review Letters 104, 057006 (2010).

Iron pnictides: 
a new class of high temperature superconductors
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TSDW 
Tc

 

T0 

2.0 

0 

!"

1.0 SDW 

Superconductivity 

BaFe2(As1-xPx)2 

Temperature-doping phase diagram of  the 
iron pnictides: 

Resistivity
∼ ρ0 +ATα

S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, 
H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, 

Physical Review B 81, 184519 (2010)
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Temperature-doping phase diagram of  the 
iron pnictides: 

Resistivity
∼ ρ0 +ATα

S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, 
H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, 

Physical Review B 81, 184519 (2010)

Strange
Metal
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None of these phases are CFTs

Their electron densities are variable, 
i.e. they are compressible, and they are electrical conductors.

While finding such phases is simple at high temperatures,
there are only a few possible compressible quanutm phases...
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• Consider an infinite, continuum,

translationally-invariant quantum system with a glob-

ally conserved U(1) chargeQ (the “electron density”)

in spatial dimension d > 1.

• Describe zero temperature phases where d�Q�/dµ �=
0, where µ (the “chemical potential”) which changes

the Hamiltonian, H, to H − µQ.

• Compressible systems must be gapless.

• Conformal systems are compressible in d = 1, but

not for d > 1.

Compressible quantum matter
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One compressible state is the solid (or 
“Wigner crystal” or “stripe”). 

This state breaks translational symmetry.

Compressible quantum matter
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Another familiar compressible state is 
the superfluid. 

This state breaks the global U(1) 
symmetry associated with Q

Condensate of 
fermion pairs

Compressible quantum matter
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Graphene
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The only other 
familiar 

compressible 
phase is a 

Fermi Liquid 
with a 

Fermi surface
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The only other 
familiar 

compressible 
phase is a 

Fermi Liquid 
with a 

Fermi surface

• The only low energy excitations are long-lived quasiparticles
near the Fermi surface.
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The only other 
familiar 

compressible 
phase is a 

Fermi Liquid 
with a 

Fermi surface

• Luttinger relation: The total “volume (area)” A enclosed
by the Fermi surface is equal to �Q�.

A
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Challenge to string theory:

Classify states of compressible quantum matter in continuum 
theories which preserve translational invariance.
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Can we obtain holographic theories 
of superfluids and Fermi liquids?

Are there any other compressible phases?
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Challenge to string theory:

Classify states of compressible quantum matter in continuum 
theories which preserve translational invariance.

Can we obtain holographic theories 
of superfluids and Fermi liquids?

Are there any other compressible phases?

Yes

Yes....
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Begin with a strongly-coupled CFT

Dirac fermions + gauge field + ......
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Are there holographic theories describing the appearance of 
superfluid or Fermi liquid ground states when a chemical potential
is applied ?
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Holographic representation: AdS4

S =

�
d4x

√
−g

�
1

2κ2

�
R+

6

L2

��

A 2+1 
dimensional 

CFT
at T=0
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Electric flux

�Q�
�= 0

S =

�
d4x

√
−g

�
1

2κ2

�
R+

6

L2

�
− 1

4e2
FabF

ab

�

The Maxwell-Einstein theory of the applied 
chemical potential yields a AdS4-Reissner-Nordtröm 
black-brane
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Electric flux

A Fermi liquid is a “confining” phase, in which all the low 
energy excitations are gauge-neutral.

In such a confining phase, the horizon disappears, 
there is charge density delocalized in the bulk spacetime.

Holographic theory of a Fermi liquid
S. Sachdev
arXiv:1107.5321

S =

�
d4x

√
−g

�
1

2κ2

�
R+

6

L2

�
− Z(φ)

4e2
FabF

ab + L[matter,φ]

�

Tuesday, October 4, 2011



+
+

+

+

+ +
Electric flux

Gauss Law in the bulk
⇔ Luttinger theorem on the boundary

Holographic theory of a Fermi liquid
S. Sachdev
arXiv:1107.5321

A Fermi liquid is a “confining” phase, in which all the low 
energy excitations are gauge-neutral.

In such a confining phase, the horizon disappears, 
there is charge density delocalized in the bulk spacetime.
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Such a holographic theory describes a quantum state which 
agrees with Landau’s Fermi liquid theory in all respects.

A similar description can be obtained for superfluids using 
bosonic matter in the bulk.
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Such a holographic theory describes a quantum state which 
agrees with Landau’s Fermi liquid theory in all respects.

A similar description can be obtained for superfluids using 
bosonic matter in the bulk.

How about more exotic compressible states 
(in the hopes of describing the strange metal) ?
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+ +
Electric flux

In a confining FL phase, the metric terminates, 
the bulk charge equals the boundary charge, and

the electric flux vanishes in the IR.

Holographic theory of a Fermi liquid
S. Sachdev
arXiv:1107.5321
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+ +
+ Electric flux

In a deconfined FL* phase, the metric extends to infinity 
(representing critical IR modes),

and part of the electric flux “leaks out”.

(Proposed) Holographic theory of 
a “fractionalized Fermi liquid” (FL*)
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Fractionalized 
Fermi liquid (FL*)

AFM Metal

large Fermi 
surface heavy 
Fermi liquid

 YbAlB4

K

Q

Kc

Qc

QC1

QC2

YbRh2Si2
Yb(Rh0.94Ir0.06)2Si2

YbAgGe

YbRh2(Si0.95Ge0.05)2

     Yb(Rh0.93Co0.07)2Si2

QTC

Kondo screened paramagnet

sp
in

 li
qu

id

YbIr2Si2

CeCu2Si2

Experimental phase diagram of the heavy-fermion 
compounds 
J. Custers, P. Gegenwart, 

C. Geibel, F. Steglich, 
P. Coleman, and S. Paschen, 

Phys. Rev. Lett. 
104, 186402 (2010)
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Metal with “large” 
Fermi surface

Metal with electron 
and hole pockets

Increasing SDW order

��ϕ� �= 0 ��ϕ� = 0

Fractionalized Fermi 
liquid (FL*) phase
with no symmetry 

breaking and “small” 
Fermi surface

��ϕ� = 0

Separating onset of SDW order and 
Fermi surface reconstruction in the cuprates 

Electron and/or hole 
Fermi pockets form in 
“local” SDW order, but 
quantum fluctuations 
destroy long-range

SDW order

Y. Qi and S. Sachdev, Physical Review B 81, 115129 (2010);  M. Punk and S. Sachdev, to appear;
see also T. C. Ribeiro and X.-G. Wen, Physical Review B 74, 155113 (2006)
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 New insights and solvable models for diffusion and 
transport of strongly interacting systems near quantum critical 
points

 The description is far removed from, and complementary 
to, that of the quantum Boltzmann equation which builds on 
the quasiparticle/vortex picture.

 Prospects non-linear, and non-equilibrium transport   
 

Conclusions

Quantum criticality and conformal field theories 
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 Presented a holographic model of a Fermi liquid

 Fractionalized Fermi liquid (FL*),  appears in deconfined 
gauge theories, holographic models, and lattice theories of the 
heavy-fermion compounds and cuprates superconductors.

 Numerous plausible sightings of the FL* phase in recent 
experiments 

Conclusions

Compressible quantum matter
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