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1. A simple theoretical model

S=1/2 spins on coupled 2-leg ladders
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Follow ground state as a function of A
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Square lattice antiferromagnet

Experimental realization: La,CuO,
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Ground state has long-range
magnetic (Neel) order
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2. Collective dynamics for T>0

A. Nedl state
Excitations, 2 spin waves

Correlation length (&)
~ typical spin wave wavelength

~ exp(2np0,/k,T)

P — Spin stiffness

Typical spin wave energy
~ hclé <<k T

Mode occupation number
1/(exp(e/ ks T)-1)>> 1

—p Quasiclassical waves
(Chakravarty et al, 1989)




Dynamic Structure Factor
at antiferromagnetic wavevector
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Quasiclassical
Waves
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Angular or “phase” relaxation




2. Collective dxnami csfor T>0

B. Quantum paramagnet
Excited states

Triplet (S=1) particle

Energy dispersion away from
antiferromagnetic wavevector
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A - Energy gap

All low T dynamic correlations
are universal functionsof A and ¢




Key Observations
1. De Broglie wavelength ~ e
JAKST
<< interparticle spacing ~ g”/keT

(Quasiclassical particles)

2. Quantum mechanical S-matrix
has a super-universal form at low momenta
(in one dimension)

Spins bounce while
momenta exchange







Dynamic Structure Factor
at antiferromagnetic wavevector

(1T, 1)

Quasiclassical
Particles

__ collision
raie

~ kBT e—A/kBT

Particles are quantum lumps of
“*amplitude oscillation” of
anti-ferromagnetic order parameter




Excitation energy A and linewidth I
for Y,BaNIO,
C. Broholm et al. (unpublished)

Solid linefor I — theory with
no free parameters
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“Universal
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3. A global phase diagram for doped
antiferromagnets and application to the
cuprate superconductors

(M. Vojtaand S.S., Phys. Rev. Lett. in press)

Extended t- Jmodel on the square lattice
H Z\_ tlj la + ijS[S \/Ijnln

1> ]
Plot phase diagram of stable ground
states as a function of:

(1) Doping o

J, (second neighbor)
J, (first neighbor)

(2) Frustration

OR

N, where spin symmetry
SU(2) - p(N)

Method and partial results on phase diagram:
S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991).




Ground states are fully characterized
by the manner in which symmetries
are broken:

1.S - electromagnetic U(1)

2. M —magnetic So(N)

3.C —lattice trand ations are reflections
(must be broken by observables

(like charge density) which are
invariant under S and M)

e.g.
Nedl state - breaksonly M

|ncommensurate, collinear spin-density-wave -
breaks M and C




A. Magnetic order- paramagnet
transitions in insulating square

| attice antiferromagnets.

Spin-Pelerls state

Nedl state C broken;
M broken Bond-centered charge

density wave (“stripe’)

O >
=04 3,13,

[

Second-order
guantum phase
transition (?)

(Kotov et a cond-mat/9903154
Singh et a cond-mat/9904064)




S (length of spin)
Semiclassical
Non-linear ¢ model
A

Quantum
dimer model

N (number of spin

components)
A

N/S

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)
G. Murthy and S. Sachdev, Nucl. Phys. B344, 557 (1990)




Quantum “entropic” effects prefer one-
dimensional ordered structures




B. A phase diagram for doped
antiferromagnets

holedensity = 0.5/unit length

C broken

e

Doping 6

S brokenfor al 6>0, large N




Charge ordering wavevector K

B

0.1
Doping o

Plateaus at 1/(even integer)




Stripespx 1,p =8




Fermion excitationenergy at 0 =1/8




C. Quantum phase transitions

(@) Onset of M ordering

L ow energy excitations:
* Magnetic order parameter
» Gapless Fermi quasiparticles

Gapless Fermi
Pointsin ad-wave
superconductor

If Q# G (magnetic-ordering wavevector),or if
fermion excitations are fully gapped, then magnetic
ordering transition is identical to that at o=0, and
described by the O(3) non-linear o model:

1, v
S= [d%dr Z(O“r])




NMR measurements by Imai et al
Phys. Rev. Lett. 70, 1002 (1993).
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waves
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Particle —»"resonance” peak in neutron
scattering ?
(Rossat-Mignod, Mason, Keimer...)




(b) Onset of C ordering

Pointsin ad-wave
superconductor

1. .2

If H = K (charge-ordering wavevector), guantum
transition is described by atheory of
4 “Dirac” fermions. Y1, , ¥4
2 complex scalars (amplitude of charge density
wave at wavevector K): &, , d,

S= deXdT@la¢w1a +w20¢w20 T ‘aﬂq)x + ‘aﬂq)y‘z

+i (qaxzpjaayz//m +O® £, 4,0 i, +H.C)

o+ flulo oo ] +vo o f]




Renormalization group analysis
Expansion in e&=3-d
(Similar to analysis by L. Balents, M.P.A. Fisher,
and C. Nayak Int. J. Mod. Phys. B 12, 1033 (1998))

G _2 ) gy
d¢ 2
Scale-invariant, interacting fixed point

with dynamic exponent z=1.

T>0 fermion Green’ s function:;

s
GF(k,C()):/\—X ( ck ha)j

e

Anomalous exponent 7. =£/6+---

(Bare € expansion for scaling function X, fails at very
low momenta and frequency. Self energy has term
5(0,w) ~ -ie(k, T o(hw) . Self-consistent, quasi-classical theory
IS necessary to compute fermion damping)

KT KT

Proposal: this quantum-criticality isthe origin of
photoemission line broadening observed by Valla,
Fedorov,Johnson,Wells et a (Science, in press) in
optimally doped Bi,Sr,CaCu,O;, 5

chk = kT xz(lf—“T’]

B




Scaling function for photoemission
probability.

Im & (0, p) * n(w)
for p=(p,,0,0), £=0.2,
W —> w +n, n=0.2
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4. Quantum impurity in a nearly-critical
antiferromagnet

Make any localized deformation of
antiferromagnet; e.g. remove aspin

1. 1o

Susceptibility X = AXy + Ximo
(A = area of system)
In paramagnetic phaseas T — 0

(B ) T S(S+1
Xb_(hz 2 je ;Ximp: ( )
C7t 3k, T
For ageneral impurity X, definesthe value of S

—

lim (S (7)S,(0)) = 20

I -0




Thislast relationship holds in the multi-channel
Kondo problem because the magnetic response of the
screening cloud is negligible due to an exact
“compensation” property. There is no such property
here, and naive scaling applies. Thisleadsto

_ Universal number
KT

imp

Curieresponse of an irrational spin




A
T
T~ R x» = CokpT/(h*c?) L7
~ < [ Ximp — Cl/(kBT) P -
N\ 7
\ /7
xo = (A/(xh?c?))e kT | e = ps/ (B3
Ximp — S(S+ 1)/(3kBT) // Ximpl = CS/,OS
I A
. f
A\ A
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In the Neel phase
Universal number

spin stiffness

spin stiffness o, = (o, 0, 2
Bulk susceptibility vanishes while impurity
susceptibility divergesas p— 0

/YimpD

At T >0, thermal averaging leadsto

2

2)(
3k, T 37

Ximp -




Boundary quantum field theory

S= [dedr [ (V.da) + @00 + 1) + (6
+ [ dT iSAa(n)dCZa — SN (T)Po(x = 0,7)

@ Neel order parameter
N Orientation of impurity spin

S functions; £ =3-d

_ sy 3 5 g
Bly) = —5 +7 v+1441
7 (S(S +1) = 5] 99" + O (3, V&)
B llg2 23g3 A
Blg) = —eg+ =~ — -+ O(g)

Physics controlled by fixed points
at g = g" and v = ~v".




Bulk excitations in qguantum paramagnet

At T=0 there isamagnon pole
1
S(G,w) =
(G, w) T

|mpurities broaden thisto

1
A—w—Il
We obtained (exponents are exact)
[ =nA(hc)"

S(G,w) =

For experimentson Zn - doped Y Ba,Cu,0,
(Fong et al, PRL 82,1939 (1999))
n =0.005
A =41 meV
hc=0.2eV
— [=5meV

Measured vaue = 4.25 meV




Conclusions

1. Described T>0 crossovers near asimple
magnetic guantum phase transition; found
relaxation rates and transport coefficients
which are universal functions of
fundamental constants and thermodynamic

variables (“universal incoherent
conductance”).

Theory of T>0 spin dynamicsin gapped
guasi-one-dimensional antiferromagnets-
guantitative comparisons with experiments.

3. Global phase diagram for transitionsin
doped antiferromagnets compared with
many experiments on the high temperature
superconductors.

A.. Proposed a phase diagram for doped
antiferromagnets on the square lattice. All
ground states are “ conventional”, and their
excitations can be described by
electron Hartree-Fock/ BCS theory.

B. Described quantum-critical points between
phases. these control anomalous behavior

in T>0 crossovers.




C. Experimental issues:

- Bond-centered vs. site-centered stripes
- States with 2x1 unit cells ?

- Correspondence between wavevectors of Fermi
points and spin/charge fluctuations ?

D. Theoretical issues:
- Theory for T>0 fermion damping in quantum-
critical region
- Charge transport for T > T,

4. Theory of quantum impurity in anearly
critical antiferromagnet — irrational spin
excitations and a new boundary quantum
field theory.




