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1. Simple model of a quantum phase 
transition ---

coupled-ladder antiferromagnet

2.   Collective dynamics at low 
temperatures

A. Quasiclassical waves
B. Quasiclassical particles

Application to 
one-dimensional gapped
antiferromagnets

3. A global phase diagram for doped
antiferromagnets and application to the
cuprate superconductors. 

A. Magnetic order- paramagnet
transitions in insulating square  
lattice antiferromagnets.

B. A phase diagram for doped
antiferromagnets.



C. Quantum phase transitions
(a) Magnetic order
(b) charge order

D. Experimental implications 

4.  Quantum impurity in a nearly-critical
antiferromagnet ---

localized excitation with an 
irrational spinirrational spin

Applications to double-layer quantum Hall systems and 
the superconductor-insulator transition.



1. A simple theoretical model

S=1/2 spins on coupled 2-leg ladders
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Follow ground state as a function of λ
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1=λ
Square lattice antiferromagnet

Experimental realization: 42CuOLa

Ground state has long-range
magnetic (Neel) order 

( ) 0 ≠−= + NS yx ii
i

�



0=λ
Decoupled 2-leg ladders
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Quantum paramagnet
ground state for 
J K<<

Qualitatively similar 
ground state for all
J K
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2. Collective dynamics for T>0 

A. Neel state
Excitations:  2 spin waves
Correlation length (ξ)

~ typical spin wave wavelength
~  exp( )TkBs /2 ρπ

→sρ Spin stiffness

Typical spin wave energy
~ ξ/c� TkB<<

Mode occupation number
( )( ) 11/exp/1 >>−TkBε

Quasiclassical waves
(Chakravarty et al, 1989)



Dynamic Structure Factor
at antiferromagnetic wavevector
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Quasiclassical
Waves

Angular or “phase” relaxation



2. Collective dynamics for T>0 

B. Quantum paramagnet
Excited states

Triplet (S=1) particle

Energy dispersion away from
antiferromagnetic wavevector
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22kcε

→∆ Energy gap

All low T dynamic correlations 
are universal functions of ∆ and c



Key Observations

1. De Broglie wavelength
Tk

c

B∆
�~

<< interparticle spacing TkBe /~ ∆

2. Quantum mechanical S-matrix
has a super-universal form at low momenta

(in one dimension)
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(Quasiclassical particles)

Spins bounce while 
momenta exchange
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Dynamic Structure Factor
at antiferromagnetic wavevector

S(π,ω)
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ϕτ

Quasiclassical
Particles

Particles are quantum lumps of 
“amplitude oscillation” of 

anti-ferromagnetic order parameter
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52BaNiOYfor                   
linewidth andenergy  Excitation Γ∆

C. Broholm et al. (unpublished)

Solid line for Γ – theory with 
no free parameters
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Extended t-J model on the square lattice
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Plot phase diagram of stable ground
states as a function of:

(1) Doping δ

(2) Frustration

OR

N, where spin symmetry  

neighbor)(first 
neighbor) (second 
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( ) ( )NSpSU →2
Method and partial results on phase diagram: 
S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991).

3.  A global phase diagram for doped
antiferromagnets and application to the
cuprate superconductors

(M. Vojta and S.S., Phys. Rev. Lett. in press)



Ground states are fully characterized
by the manner in which symmetries 
are broken:

1.S - electromagnetic U(1)

2.M – magnetic Sp(N)

3.C – lattice translations are reflections
(must be broken by observables

(like charge density) which are
invariant under S and M)

e.g.
Neel state  - breaks only M

Incommensurate, collinear spin-density-wave  -
breaks M and C



Spin-Peierls state
C broken;
Bond-centered charge
density wave (“stripe”)

A. Magnetic order- paramagnet
transitions in insulating square  
lattice antiferromagnets. δ=0

(Kotov et al cond-mat/9903154
Singh et al cond-mat/9904064)

12 / JJ0 4.0≈

Neel state
M broken

Second-order
quantum phase 
transition (?)



N  (number of spin
components)

S (length of spin)

Quantum
dimer model

Semiclassical
Non-linear σ model

Schwinger
bosons

N/S

M order 
parameter

C order 
parameter

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)
G. Murthy and S. Sachdev, Nucl. Phys. B344, 557 (1990) 



Quantum “entropic” effects prefer one-
dimensional ordered structures



B. A phase diagram for doped 
antiferromagnets

length0.5/unit  density  hole ≈

S broken for all δ>0 , large N



Plateaus at 1/(even integer)
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(a) Onset of M ordering
Low energy excitations:
• Magnetic order parameter
• Gapless Fermi quasiparticles     

Q
Gapless Fermi
Points in a d-wave
superconductor

If             (magnetic-ordering wavevector),or if 
fermion excitations are fully gapped, then magnetic 
ordering transition is identical to that at δ=0, and 
described by the O(3) non-linear σ model:
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C. Quantum phase transitions

GQ ≠



NMR measurements by Imai et al
Phys. Rev. Lett. 70, 1002 (1993).

Quasiclassical
waves

Quasiclassical
particles

Particle       “resonance” peak in neutron 
scattering ?

(Rossat-Mignod, Mason, Keimer…)



(b) Onset of C ordering

H Gapless Fermi
Points in a d-wave
superconductor

If H = K (charge-ordering wavevector), quantum 
transition is described by a theory of 

4 “Dirac” fermions:          ,
2 complex scalars (amplitude of charge density

wave at wavevector K):        ,
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Renormalization group analysis
Expansion in ε=3-d

(Similar to analysis by L. Balents, M.P.A. Fisher, 
and C. Nayak Int. J. Mod. Phys. B 12, 1033 (1998))
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Scale-invariant, interacting fixed point
with dynamic exponent z=1.

T>0 fermion Green’s function:

δ+8222 OCaCuSrBi
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Anomalous exponent �+= 6/εηF

Proposal: this quantum-criticality is the origin of 
photoemission line broadening observed by Valla,
Fedorov,Johnson,Wells et al (Science, in press) in
optimally doped 
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(Bare ε expansion for scaling function      fails at very
low momenta and frequency. Self energy has term

. Self-consistent, quasi-classical theory
is necessary to compute fermion damping)
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4. Quantum impurity in a nearly-critical
antiferromagnet 

Make anyany localized deformation of 
antiferromagnet; e.g. remove a spin

X

Susceptibility impbA χχχ +=
(A = area of system)

In paramagnetic phase as 0→T
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For a general impurity impχ defines the value of S
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This last relationship holds in the multi-channel 
Kondo problem because the magnetic response of the 
screening cloud is negligible due to an exact 
“compensation” property. There is no such property 
here, and naïve scaling applies. This leads to 
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numberUniversal=χ

Curie response of an irrational spin



In the Neel phase

stiffnessspin
numberUniversal=⊥impχ

( ) 2/1 stiffnessspin sysxs ρρρ =
Bulk susceptibility vanishes while impurity 
susceptibility diverges as 0→sρ
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Boundary quantum field theory

parameterorder  Neel  φ
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Bulk excitations in quantum paramagnet

At T=0 there is a magnon pole
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Measured value = 4.25 meV



Conclusions

1. Described T>0 crossovers near a simple 
magnetic quantum phase transition; found
relaxation rates and transport coefficients
which are universal functions of 
fundamental constants and thermodynamic
variables (“universal incoherent 
conductance”).

2. Theory of T>0 spin dynamics in gapped 
quasi-one-dimensional antiferromagnets-
quantitative comparisons with experiments.

3.   Global phase diagram for transitions in 
doped antiferromagnets compared with 
many experiments on the high temperature 
superconductors.
A. Proposed a phase diagram for doped

antiferromagnets on the square lattice. All
ground states are “conventional”, and their
excitations can be described by 
electron Hartree-Fock/ BCS theory.

B.  Described quantum-critical points between
phases: these control anomalous behavior
in T>0 crossovers.



C.  Experimental issues:
- Bond-centered vs. site-centered stripes
- States with 2x1 unit cells ?
- Correspondence between wavevectors of Fermi   
points and spin/charge fluctuations ?

D.   Theoretical issues:
- Theory for T>0 fermion damping in quantum-
critical region

- Charge transport for

4.    Theory of quantum impurity in a nearly 
critical antiferromagnet – irrational spin 
excitations and a new boundary quantum 
field theory. 
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