Equilibrium and non-equilibrium dynamics of SYK models

Strongly interacting conformal field theory in condensed matter physics, Institute for Advanced Study, Tsinghua University, Beijing, June 25-27, 2017

Subir Sachdev

Talk online: sachdev.physics.harvard.edu

PHYSICS

Quantum matter with quasiparticles:

• Quasiparticles are additive excitations: The low-lying excitations of the many-body system can be identified as a set $\{n_{\alpha}\}$ of quasiparticles with energy ε_{α}

$$E = \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \dots$$

• Note: The electron liquid in one dimension and the fractional quantum Hall state both have quasiparticles; however, the quasiparticles do not have the same quantum numbers as an electron.

Quantum matter with quasiparticles:

• Quasiparticles eventually collide with each other. Such collisions eventually leads to thermal equilibration in a chaotic quantum state, but the equilibration takes a long time. In a Fermi liquid, this time is of order $\hbar E_F/(k_BT)^2$ as $T \to 0$, where E_F is the Fermi energy.

Quantum matter without quasiparticles:

- No quasiparticle decomposition of low-lying states
- Rapid thermalization

Local thermal equilibration or phase coherence time, τ_{φ} :

• There is an *lower bound* on τ_{φ} in all manybody quantum systems as $T \to 0$,

$$\tau_{\varphi} \ge C \frac{\hbar}{k_B T},$$

- where C is a T-independent constant.
- Systems without quasiparticles have

$$\tau_{\varphi} \sim \frac{\hbar}{k_B T},$$

K. Damle and S. Sachdev, PRB **56**, 8714 (1997) S. Sachdev, *Quantum Phase Transitions*, Cambridge (1999) A simple model of a metal with quasiparticles

$$H = \frac{1}{(N)^{1/2}} \sum_{i,j=1}^{N} t_{ij} c_i^{\dagger} c_j + \dots$$
$$c_i c_j + c_j c_i = 0 \quad , \quad c_i c_j^{\dagger} + c_j^{\dagger} c_i = \delta_{ij}$$
$$\frac{1}{N} \sum_i c_i^{\dagger} c_i = \mathcal{Q}$$

 t_{ij} are independent random variables with $\overline{t_{ij}} = 0$ and $|t_{ij}|^2 = t^2$

Fermions occupying the eigenstates of a $N \ge N$ random matrix

A simple model of a metal with quasiparticles

Let ε_{α} be the eigenvalues of the matrix t_{ij}/\sqrt{N} . The fermions will occupy the lowest $N\mathcal{Q}$ eigenvalues, up to the Fermi energy E_F . The density of states is $\rho(\omega) = (1/N) \sum_{\alpha} \delta(\omega - \varepsilon_{\alpha})$.

A simple model of a metal with quasiparticles

 $\begin{array}{l} \mbox{Many-body}\\ \mbox{level spacing}\\ \sim 2^{-N} \end{array}$

Quasiparticleexcitations withspacing $\sim 1/N$

There are 2^N many body levels with energy

$$E = \sum_{\alpha=1}^{N} n_{\alpha} \varepsilon_{\alpha},$$

where $n_{\alpha} = 0, 1$. Shown are all values of E for a single cluster of size N = 12. The ε_{α} have a level spacing $\sim 1/N$.

The Sachdev-Ye-Kitaev (SYK) model

(See also: the "2-Body Random Ensemble" in nuclear physics; did not obtain the large *N* limit; T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Rev. Mod. Phys. **53**, 385 (1981))

$$H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} J_{ij;k\ell} c_i^{\dagger} c_j^{\dagger} c_k c_\ell - \mu \sum_i c_i^{\dagger} c_i$$
$$c_i c_j + c_j c_i = 0 \quad , \quad c_i c_j^{\dagger} + c_j^{\dagger} c_i = \delta_{ij}$$
$$\mathcal{Q} = \frac{1}{N} \sum_i c_i^{\dagger} c_i$$

 $J_{ij;k\ell}$ are independent random variables with $\overline{J_{ij;k\ell}} = 0$ and $\overline{|J_{ij;k\ell}|^2} = J^2$ $N \to \infty$ yields critical strange metal.

S. Sachdev and J.Ye, PRL **70**, 3339 (1993)

A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)

The Sachdev-Ye-Kitaev (SYK) model

There are 2^N many body levels with energy E, which do not admit a quasiparticle decomposition. Shown are all values of E for a single cluster of size N = 12. The $T \rightarrow 0$ state has an entropy S_{GPS} with

$$\frac{S_{GPS}}{N} = \frac{G}{\pi} + \frac{\ln(2)}{4} = 0.464848.$$

< $\ln 2$

Non-quasiparticle excitations with spacing $\sim e^{-S_{GPS}}$

Many-body

level spacing \sim

 $2^{-N} = e^{-N \ln 2}$

where G is Catalan's constant, for the half-filled case $\mathcal{Q} = 1/2$.

> GPS: A. Georges, O. Parcollet, and S. Sachdev, PRB **63**, 134406 (2001)

W. Fu and S. Sachdev, PRB 94, 035135 (2016)

SYK and black holes

The SYK model has "dual" description in which an extra spatial dimension, ζ , emerges. The curvature of this "emergent" spacetime is described by Einstein's theory of general relativity

The BH entropy is proportional to the size of \mathbb{T}^2 , and hence the surface area of the black hole. Mapping to SYK applies when temperature $\ll 1/(\text{size of } \mathbb{T}^2)$.

SYK and black holes

The SYK model has "dual" description in which an extra spatial dimension, ζ , emerges. The curvature of this "emergent" spacetime is described

by Einstein's theory of general relativity

Quantum Quench of the SYK model

Julia Steinberg Valentin Kasper

Andreas Eberlein

A. Eberlein, V. Kasper, S. Sachdev and J. Steinberg, arXiv: 1706.xxxxx

Quench from

pq fermion + q fermion interactions for t < 0, to only q fermion interactions for t > 0.

$$H = f(t) (i)^{\frac{pq}{2}} \sum_{1 \le i_1 < i_2 < \dots < i_{pq} \le N} j_{i_1 i_2 \dots i_{pq}} \psi_{i_1} \psi_{i_2} \dots \psi_{i_{pq}}$$
$$+ g(t) (i)^{\frac{q}{2}} \sum_{1 \le i_1 < i_2 < \dots < i_q \le N} j'_{i_1 i_2 \dots i_q} \psi_{i_1} \psi_{i_2} \dots \psi_{i_q}$$

for
$$t < 0$$
, $f(t) = 1$ and $g(t) = 1$;
for $t > 0$, $f(t) = 0$ and $g(t) = 1$.

$$\begin{split} \langle j_{i_1...i_{pq}}^2 \rangle &= \frac{J_p^2(pq-1)!}{N^{pq-1}} \quad , \quad J_p(t) = J_p f(t) \\ \langle j_{i_1...i_q}'^2 \rangle &= \frac{J^2(q-1)!}{N^{q-1}} \quad , \quad J(t) = Jg(t) \end{split}$$

Kadanoff-Baym equations

$$\begin{split} \left(iG^{>}(t_{1},t_{2}) &= \langle T_{C} \psi(t_{1}^{-})\psi(t_{2}^{+}) \rangle \quad , \quad G^{<}(t_{1},t_{2}) = -G^{>}(t_{2},t_{1}) \right) \\ i\frac{\partial}{\partial t_{1}}G^{>}(t_{1},t_{2}) &= -i^{q} \int_{-\infty}^{t_{1}} dt_{3} J(t_{1})J(t_{3}) \left[(G^{>})^{q-1}(t_{1},t_{3}) - (G^{<})^{q-1}(t_{1},t_{3}) \right] G^{>}(t_{3},t_{2}) \\ &+ i^{q} \int_{-\infty}^{t_{2}} dt_{3} J(t_{1})J(t_{3})(G^{>})^{q-1}(t_{1},t_{3}) \left[G^{>}(t_{3},t_{2}) - G^{<}(t_{3},t_{2}) \right] \\ &- i^{pq} \int_{-\infty}^{t_{1}} dt_{3} J_{p}(t_{1})J_{p}(t_{3}) \left[(G^{>})^{pq-1}(t_{1},t_{3}) - (G^{<})^{pq-1}(t_{1},t_{3}) \right] G^{>}(t_{3},t_{2}) \\ &+ i^{pq} \int_{-\infty}^{t_{2}} dt_{3} J_{p}(t_{1})J_{p}(t_{3})(G^{>})^{pq-1}(t_{1},t_{3}) - G^{<}(t_{3},t_{2}) - G^{<}(t_{3},t_{2}) \right] , \\ -i\frac{\partial}{\partial t_{2}}G^{>}(t_{1},t_{2}) &= -i^{q} \int_{-\infty}^{t_{1}} dt_{3} J(t_{3})J(t_{2}) \left[G^{>}(t_{1},t_{3}) - G^{<}(t_{1},t_{3}) \right] (G^{>})^{q-1}(t_{3},t_{2}) \\ &+ i^{q} \int_{-\infty}^{t_{2}} dt_{3} J(t_{3})J(t_{2})G^{>}(t_{1},t_{3}) \left[(G^{>})^{q-1}(t_{3},t_{2}) - (G^{<})^{q-1}(t_{3},t_{2}) \right] \\ &- i\frac{p^{q}}{\int_{-\infty}^{t_{1}} dt_{3} J_{p}(t_{3})J_{p}(t_{2}) \left[G^{>}(t_{1},t_{3}) - G^{<}(t_{1},t_{3}) \right] (G^{>})^{pq-1}(t_{3},t_{2}) \\ &+ i^{pq} \int_{-\infty}^{t_{2}} dt_{3} J_{p}(t_{3})J_{p}(t_{2}) \left[G^{>}(t_{1},t_{3}) - G^{<}(t_{1},t_{3}) \right] (G^{>})^{pq-1}(t_{3},t_{2}) \\ &+ i^{pq} \int_{-\infty}^{t_{2}} dt_{3} J_{p}(t_{3})J_{p}(t_{2})G^{>}(t_{1},t_{3}) \left[(G^{>})^{pq-1}(t_{3},t_{2}) - (G^{<})^{pq-1}(t_{3},t_{2}) \right] \\ &+ i^{pq} \int_{-\infty}^{t_{2}} dt_{3} J_{p}(t_{3})J_{p}(t_{2})G^{>}(t_{1},t_{3}) \left[(G^{>})^{pq-1}(t_{3},t_{2}) - (G^{<})^{pq-1}(t_{3},t_{2}) \right] \\ &+ i^{pq} \int_{-\infty}^{t_{2}} dt_{3} J_{p}(t_{3})J_{p}(t_{2})G^{>}(t_{1},t_{3}) \left[(G^{>})^{pq-1}(t_{3},t_{2}) - (G^{<})^{pq-1}(t_{3},t_{2}) \right] \\ &+ i^{pq} \int_{-\infty}^{t_{2}} dt_{3} J_{p}(t_{3})J_{p}(t_{2})G^{>}(t_{1},t_{3}) \left[(G^{>})^{pq-1}(t_{3},t_{2}) - (G^{<})^{pq-1}(t_{3},t_{2}) \right] \\ &+ i^{pq} \int_{-\infty}^{t_{2}} dt_{3} J_{p}(t_{3})J_{p}(t_{2})G^{>}(t_{1},t_{3}) \left[(G^{>})^{pq-1}(t_{3},t_{2}) - (G^{<})^{pq-1}(t_{3},t_{2}) \right] \\ &+ i^{pq} \int_{-\infty}^{t_{2}} dt_{3} J_{p}(t_{3})J_{p}(t_{2})G^{>}(t_{1},t_{3}) \left[(G^{>})^{pq-1}(t_{3},t_{2})$$

Determine an effective inverse temperature from such data, and then fit to $\beta_{\text{eff}}(\mathcal{T}) = \beta_f + \alpha \exp(-\Gamma \mathcal{T})$, where $\mathcal{T} = (t_1 + t_2)/2$, and obtain the relaxation rate, Γ .

Numerical solutions of Kadanoff-Baym equations p=1/2, q=4 $J_{2,f}=0, J_{4,i}=J_{4,f}=J_4=1$

 $q \rightarrow \infty$ limit of Kadanoff-Baym equations

_

$$G^{>}(t_1, t_2) = -\frac{i}{2} \left[1 + \frac{1}{q}g(t_1, t_2) + \dots \right]$$

$$\begin{split} \frac{\partial}{\partial t_1} g(t_1, t_2) &= 2 \int_{-\infty}^{t_2} dt_3 \,\mathcal{J}(t_1) \mathcal{J}(t_3) e^{g(t_1, t_3)} - \int_{-\infty}^{t_1} dt_3 \,\mathcal{J}(t_1) \mathcal{J}(t_3) \left[e^{g(t_1, t_3)} + e^{g(t_3, t_1)} \right] \\ &+ 2 \int_{-\infty}^{t_2} dt_3 \,\mathcal{J}_p(t_1) \mathcal{J}_p(t_3) e^{pg(t_1, t_3)} - \int_{-\infty}^{t_1} dt_3 \,\mathcal{J}_p(t_1) \mathcal{J}_p(t_3) \left[e^{pg(t_1, t_3)} + e^{pg(t_3, t_1)} \right] \\ \frac{\partial}{\partial t_2} g(t_1, t_2) &= 2 \int_{-\infty}^{t_1} dt_3 \,\mathcal{J}(t_3) \mathcal{J}(t_2) e^{g(t_3, t_2)} - \int_{-\infty}^{t_2} dt_3 \,\mathcal{J}(t_3) \mathcal{J}(t_2) \left[e^{g(t_3, t_2)} + e^{g(t_2, t_3)} \right] \\ &+ 2 \int_{-\infty}^{t_1} dt_3 \,\mathcal{J}_p(t_3) \mathcal{J}_p(t_2) e^{pg(t_3, t_2)} - \int_{-\infty}^{t_2} dt_3 \,\mathcal{J}_p(t_3) \mathcal{J}_p(t_2) \left[e^{pg(t_3, t_2)} + e^{pg(t_2, t_3)} \right] \\ &\mathcal{J}^2(t) &= q J^2(t) 2^{1-q} \quad , \quad \mathcal{J}^2_p(t) = q J^2_p(t) 2^{1-pq} \end{split}$$

These non-linear, partial, integro-differential equations are exactly solvable !

 $q \to \infty$ limit of Kadanoff-Baym equations

From a derivative of the Kadanoff-Baym equations, we obtain

$$\frac{\partial^2}{\partial t_1 \partial t_2} g(t_1, t_2) = 2\mathcal{J}(t_1)\mathcal{J}(t_2)e^{g(t_1, t_2)} + 2\mathcal{J}_p(t_1)\mathcal{J}_p(t_2)e^{pg(t_1, t_2)}$$

For $t_1 > 0$ and $t_2 > 0$, this is the two-dimensional Liouville equation. The most general solution is of the form

$$g(t_1, t_2) = \ln \left[\frac{-h_1'(t_1)h_2'(t_2)}{\mathcal{J}^2(h_1(t_1) - h_2(t_2))^2} \right] \,.$$

A remarkable and significant feature of this expression is that it is exactly invariant under SL(2,C) transformations

$$h_{\alpha}(t) \rightarrow \frac{a h_{\alpha}(t) + b}{c h_{\alpha}(t) + d},$$

where $\alpha = 1, 2$ and a, b, c, d are arbitrary complex numbers.

$q \rightarrow \infty$ limit of Kadanoff-Baym equations

Substituting back into the Kadanoff-Baym equations, we find that for generic initial conditions in the regime $t_1 < 0$ and $t_2 < 0$, the solutions for $h_1(t_1)$ and $h_2(t_2)$ at $t_1 > 0$ and $t_2 > 0$ can be written as

$$h_1(t) = \frac{a e^{i\theta} e^{\sigma t} + b}{c e^{i\theta} e^{\sigma t} + d} \quad , \quad h_2(t) = \frac{a e^{-i\theta} e^{\sigma t} + b}{c e^{-i\theta} e^{\sigma t} + d} \,.$$

The complex constants a, b, c, d, and the real constants σ , θ are determined by the initial conditions in the $t_1 < 0$ and $t_2 < 0$ quadrant of the t_1-t_2 plane. Substituting back into the SL(2,C) invariant Green's function, we obtain

$$g(t_1, t_2) = \ln \left[\frac{-\sigma^2}{4\mathcal{J}^2 \sinh^2(\sigma(t_1 - t_2)/2 + i\theta)} \right] \quad , \quad \sigma = 2\mathcal{J}\sin(\theta) \,,$$

which is (as expected) independent of a, b, c, d. The surprising feature is that depends only upon $t = t_1 - t_2$, and is independent of $\mathcal{T} = (t_1 + t_2)/2$.

$$q \rightarrow \infty$$
 limit of Kadanoff-Baym equations

Indeed, from the KMS condition, we find g describes a state in thermal equilibrium at an inverse temperature

$$\beta_f = \frac{2(\pi - 2\theta)}{\sigma} \,.$$

As $T_f \to 0$, $\theta \to 0$, and $\sigma = 2\pi T_f$, the maximal chaos rate.

The system is thermal at $t = 0^+$

Actually, this may be a *pre-thermal* state (pointed out by Aavishkar Patel). The next correction

$$G^{>}(t_1, t_2) = -\frac{i}{2} \left[1 + \frac{1}{q} g(t_1, t_2) + \frac{1}{q^2} g_2(t_1, t_2) \dots \right]$$

may lead to a g_2 which relaxes at a rate $\sim T_f$.

 $q \rightarrow \infty$ limit of Kadanoff-Baym equations

This result has a remarkable connection to the Schwarzian action. Consider the Euler-Lagrange equation of motion of a Lagrangian, \mathcal{L} , which is the Schwarzian of h(t)

$$\mathcal{C}[h(t)] = \frac{h'''(t)}{h'(t)} - \frac{3}{2} \left(\frac{h''(t)}{h'(t)}\right)^2.$$

The equation of motion is

$$\left[h'(t)\right]^{2} h''''(t) + 3 \left[h''(t)\right]^{3} - 4h'(t)h''(t)h'''(t) = 0.$$

This is exactly solved by

$$h(t) = \frac{a e^{\sigma t} + b}{c e^{\sigma t} + d}.$$

SYK and AdS₂

SS, PRL 105, 151602 (2010)

SYK and AdS₂

Thermal diffusivity and chaos in metals without quasiparticles

Mike Blake

Aavishkar Patel

Wenbo Fu

Yingfei Gu

Richard Davison

SYK model $H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{i} J_{ij;k\ell} c_i^{\dagger} c_j^{\dagger} c_k c_{\ell} - \mu \sum_i c_i^{\dagger} c_i c_i$ $c_i c_j + c_j c_i = 0 \quad , \quad c_i c_i^{\dagger} + c_i^{\dagger} c_i = \delta_{ij}$ $\mathcal{Q} = \frac{1}{N} \sum c_i^{\dagger} c_i$ • 4 ${\scriptstyle \bullet}$ 5 $J_{4,5,6,11}$ 6 ${\scriptstyle \bullet}$ $J_{3.5,7,13}$ • 7 • 10 • 8 • 9 12 $J_{8,9,12,14}$ • 11 • 12 13

 $J_{ij;k\ell}$ are independent random variables with $\overline{J_{ij;k\ell}} = 0$ and $|\overline{J_{ij;k\ell}}|^2 = J^2$ $N \to \infty$ yields critical strange metal.

S. Sachdev and J.Ye, PRL **70**, 3339 (1993)

A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)

SYK and AdS₂

Reparametrization and phase zero modes We can write the path integral for the SYK model as

$$\mathcal{Z} = \int \mathcal{D}G(\tau_1, \tau_1) \mathcal{D}\Sigma(\tau_1, \tau_2) e^{-NS[G, \Sigma]}$$

for a known action $S[G, \Sigma]$. We find the saddle point, G_s , Σ_s , and only focus on the "Nambu-Goldstone" modes associated with breaking reparameterization and U(1) gauge symmetries by writing

$$G(\tau_1, \tau_2) = [f'(\tau_1)f'(\tau_2)]^{1/4}G_s(f(\tau_1) - f(\tau_2))e^{i\phi(\tau_1) - i\phi(\tau_2)}$$

(and similarly for Σ). Then the path integral is approximated by

$$\mathcal{Z} = \int \mathcal{D}f(\tau)\mathcal{D}\phi(\tau)e^{-NS_{\rm eff}[f,\phi]}$$

J. Maldacena and D. Stanford, arXiv:1604.07818; R. Davison, Wenbo Fu, A. Georges, Yingfei Gu, K. Jensen, S. Sachdev, arXiv.1612.00849; S. Sachdev, PRX **5**, 041025 (2015); J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857; K. Jensen, arXiv:1605.06098; J. Engelsoy, T.G. Mertens, and H. Verlinde, arXiv:1606.03438

$$\frac{\text{SYK and AdS}_2}{\mathcal{Z} = \int \mathcal{D}f(\tau)\mathcal{D}\phi(\tau)e^{-NS_{\text{eff}}[f,\phi]}}$$

Symmetry arguments, and explicit computations, show that the effective action is

$$S_{\text{eff}}[f,\phi] = \frac{K}{2} \int_0^{1/T} d\tau (\partial_\tau \phi + i(2\pi \mathcal{E}T)\partial_\tau \epsilon)^2 - \frac{\gamma}{4\pi^2} \int_0^{1/T} d\tau \left\{ \tan(\pi T(\tau + \epsilon(\tau),\tau) \right\},$$

where $f(\tau) \equiv \tau + \epsilon(\tau)$, and we have used the Schwarzian:

$$\{g,\tau\} \equiv \frac{g'''}{g'} - \frac{3}{2} \left(\frac{g''}{g'}\right)^2.$$

K and γ are related to the compressibility and the linear-T specific heat, and is a derivative of the entropy:

$$K = \left(\frac{\partial Q}{\partial \mu}\right)_T \quad , \quad S(T) = S_0 + \gamma T + \dots \quad , \quad 2\pi \mathcal{E} = \frac{dS_0}{dQ}$$

All these results apply unchanged to the gravitational theory on AdS_2 .

J. Maldacena and D. Stanford, arXiv:1604.07818; R. Davison, Wenbo Fu, A. Georges, Yingfei Gu, K. Jensen, S. Sachdev, arXiv.1612.00849; S. Sachdev, PRX **5**, 041025 (2015); J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857; K. Jensen, arXiv:1605.06098; J. Engelsoy, T.G. Mertens, and H. Verlinde, arXiv:1606.03438

Coupled SYK models

Figure 1: A chain of coupled SYK sites: each site contains $N \gg 1$ fermion with SYK interaction. The coupling between nearest neighbor sites are four fermion interaction with two from each site.

Yingfei Gu, Xiao-Liang Qi, and D. Stanford, arXiv:1609.07832 R. Davison, Wenbo Fu, A. Georges, Yingfei Gu, K. Jensen, S. Sachdev, arXiv.1612.00849

Coupled SYK and AdS₄

leading to momentum disspation

Coupled SYK and AdS₄

The response functions of the density, Q, and the energy, E exhibit diffusion

$$\begin{pmatrix} \langle \mathcal{Q}; \mathcal{Q} \rangle_{k,\omega} & \langle E - \mu \mathcal{Q}; \mathcal{Q} \rangle_{k,\omega} / T \\ \langle E - \mu \mathcal{Q}; \mathcal{Q} \rangle_{k,\omega} & \langle E - \mu \mathcal{Q}; E - \mu \mathcal{Q} \rangle_{k,\omega} / T \end{pmatrix} = \begin{bmatrix} i\omega(-i\omega + Dk^2)^{-1} + 1 \end{bmatrix} \chi_s$$

where the diffusivities are related to the thermoelectric conductivities by the Einstein relations

$$D = \begin{pmatrix} \sigma & \alpha \\ \alpha T & \overline{\kappa} \end{pmatrix} \chi_s^{-1}.$$

The Seebeck co-efficient (thermopower), α/σ , is given exactly by a thermodynamic derivative

$$\frac{\alpha}{\sigma} = \frac{\partial S_0}{\partial \mathcal{Q}}$$

The coupled-SYK and AdS₄ models realize a disordered metal with no quasiparticle excitations. (a "strange metal")

R. Davison, Wenbo Fu, A. Georges, Yingfei Gu, K. Jensen, S. Sachdev, arXiv. 1612.00849

Quantum chaos:

• The growth of chaos is characterized by

$$\left\langle \left| \{ c(x,t), c^{\dagger}(0,0) \} \right|^2 \right\rangle \sim \exp\left(\frac{1}{\tau_L} \left(t - \frac{|x|}{v_B} \right) \right)$$

in terms of the Lyapunov time $\tau_L \geq \hbar/(2\pi k_B T)$ and the <u>BUTTERFLY VELOCITY</u> v_B .

• In the SYK and AdS₂ holographic models we find $\tau_L = \hbar/(2\pi k_B T)$ and a non-universal $v_B \sim T^{1/2}$. However the thermal diffusivity (which controls the diffusion of temperature)

$$D_T = \frac{\kappa}{c_\rho} \,,$$

where c_{ρ} is the specific heat at fixed density, is given exactly by

$$D_T = v_B^2 \tau_L.$$

There is no universal relationship between the charge diffusivity, D_c , and v_B .

R. Davison, Wenbo Fu, A. Georges, Yingfei Gu, K. Jensen, S. Sachdev, arXiv. 1612.00849

leading to momentum disspation

Fermi surface coupled to a gauge field

$$\mathcal{L}[\Psi, a] = \Psi^{\dagger} \left(\partial_{\tau} - ia_{\tau} - \frac{(\nabla - i\vec{a})^2}{2m} - \mu \right) \Psi + \frac{1}{2g^2} (\nabla \times \vec{a})^2$$

Fermi surface coupled to a gauge field Compute out-of-time-order correlator to diagnose quantum chaos

Strongly-coupled theory with no quasiparticles and fast scrambling:

$$\tau_L \approx \frac{\hbar}{2.48 k_B T}$$

$$v_B \approx 4.1 \frac{N T^{1/3}}{e^{4/3}} \frac{v_F^{5/3}}{\gamma^{1/3}}$$

$$D_T \approx 0.42 v_B^2 \tau_L$$

N is the number of fermion flavors, v_F is the Fermi velocity, γ is the Fermi surface curvature, e is the gauge coupling constant.

A.A. Patel and S. Sachdev, arXiv:1611.00003

Quantum chaos:

• We examined chaos and transport in a wide-class of holographic fixed points. In general, chaos and transport can be extracted from the fixed point solution, while the AdS₂ geometries (and SYK models) required consideration of the leading irrelevant operator. For the holographic fixed points, we find

$$\tau_L = \frac{\hbar}{2\pi k_B T}$$
$$v_B \sim T^{1-1/z}$$
$$D_T = \frac{z}{2z-2} v_B^2 \tau_L,$$

where z is the dynamic critical exponent. There is no general relation to chaos for other transport co-efficients.

M. Blake, R.A. Davison, and S. Sachdev, arXiv.1612.00849

Quantum chaos:

• We define the chaos parameters by

$$\left\langle \left| \{ c(x,t), c^{\dagger}(0,0) \} \right|^2 \right\rangle \sim \exp\left(\frac{1}{\tau_L} \left(t - \frac{|x|}{v_B} \right) \right)$$

and the thermal diffusivity close to local equilibrium by

$$\frac{\partial T}{\partial t} = D_T \nabla^2 T \,.$$

Then we find the general relation

$$D_T = C \, v_B^2 \tau_L$$

where C is a numerical constant of order unity, independent of shortdistance details.

• Quantum chaos is intimately linked to the loss of phase coherence from electron-electron interactions. As the time derivative of the local phase is determined by the local energy, phase fluctuations and chaos are linked to interaction-induced energy fluctuations, and hence thermal diffusivity.

M. Blake, R.A. Davison, and S. Sachdev, arXiv. 1612.00849